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Relational biology is a study of life in terms of the organization of entailment relations
in living systems, independent of any particular physical mechanism or material
realization. Anticipatory systems and metabolism–repair (M,R)-systems are two
classes of relational models that characterize life. In this paper, I explore the
connections between them: I explicate the circumstances under which anticipation
occurs in an (M,R)-system, and show that the entailment pattern of an anticipatory
system may be represented as a network of metabolism and repair components.
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1. Objects

The objects of this paper are two classes of relational models that characterize life:

anticipatory systems and metabolism–repair (M,R)-systems. Both were introduced by the

mathematical biologist Robert Rosen (1934–1998).

1.1 Anticipatory system

Rosen first used the term ‘anticipatory system’ in the paper ‘Planning, management, policies

and strategies: four fuzzy concepts’ (Rosen 19741), published in the first volume of this

journal. Thence, he defined the ‘anticipatory modes of behaviour of organisms’ to be those:

in which an organism’s present behaviour is determined by: (a) sensory information about the
present state of the environment; and (b) an ‘internal model’ of the world, which makes
predictions about future states on the basis of the present data and the organism’s possible
reactions to it.

It was also in this paper that the now-iconic diagram of an anticipatory system first

appeared in Rosen’s writings:

ð1Þ
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In diagram (1), S, M, and E are, respectively, object system, predictive model, and set of

effectors. (I shall in later sections return to this diagrammatic representation.)

Biology is replete with situations in which organisms can generate and maintain

internal predictive models of themselves and their environments, and use the predictions

of these models about the future for purpose of control in the present. This is true at every

level, from the molecular to the cellular to the physiological to the behavioural, and this is

true in all parts of the biosphere, from microbes to plants to animals to ecosystems. One

may succinctly postulate the

Axiom of Anticipation: Life is anticipatory.

But anticipatory behaviour, while a necessary condition for life, is not restricted to the

biological universe; it, indeed, encompasses the ‘four fuzzy concepts’, and more. At the

human level it can be multiplied without end, and may seem fairly trivial: examples range

from avoiding dangerous encounters to any strategy in games and sports.

Although the concept of ‘anticipation’ had not been new, the systemic study of it was

when Rosen wrote his 1974 paper. Rosen’s rigorously mathematical study of this biology-

inspired subject led to a sequence of papers, culminating in his book Anticipatory Systems

(Rosen 1985). Therein is the generalized, formal definition as follows.

Definition. An anticipatory system is a natural system that contains an internal predictive

model of itself and of its environment, which allows it to change state at an instant in

accord with the model’s predictions pertaining to a later instant.

An anticipatory system’s present behaviour depends upon ‘future states’ or ‘future

inputs’ generated by an internal predictive model. ‘Model-based behaviour’ (or more

specifically ‘anticipatory-model-based behaviour’) is the essence of social, economic, and

political activity. Beyond its organismic origins, an anticipatory system finds analogies in

social systems, economics, politics, ethics, future studies, and many others. The common

question in these diverse fields is that of ought, which may be phrased as ‘What should we

do now?’ However different the contexts in which the question is posed, they are all alike in

their fundamental concern with the making of policy, and the associated notions of

forecasting the future and planning for it. What is sought, in each of these diverse areas, is in

effect a strategy of decision making. An understanding of the characteristics of model-

based behaviour is thus central to any strategy that one wishes to develop to control and

manage such systems, or to modify their model-based behaviour in new ways. But

underlying any strategy there must be an underlying substratum of basic principles: a

science, a theory. Rosen proposed that the theory underlying a strategy of policy generation

is that of anticipatory systems.

Note, in contrast, that a reactive system can only react, in the present, to changes that

have already occurred in the causal chain, while an anticipatory system’s present

behaviour involves aspects of past, present, and future. The presence of a predictive model

serves precisely to pull the future into the present; a system with a ‘good’ model thus

behaves in many ways as if it can anticipate the future. In other words, a predictive model

permits anticipation. Indeed, to use teleological language, the purpose of a predictive

model is to anticipate. The ‘anticipatory paradigm’ extends – but does not replace – the

‘reactive paradigm’ which has dominated the study of natural systems, and allows us a

glimpse of new and important aspects of system behaviour.
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Relational biology is a study of life in terms of the organization of entailment relations

in living systems, independent of any particular physical mechanism or material

realization. It is a subject begun by Nicolas Rashevsky, and continued by his student

Robert Rosen. For a thorough introduction to the subject, the enthused reader is invited to

read my book More than life itself: a synthetic continuation in relational biology

(Louie 2009). True to the spirit of relational biology, an anticipatory system is not defined

using its material basis, but rather using a process that exists therein: that ‘function’ and

not ‘structure’ is the important defining predicate.

1.2 (M,R)-system

Robert Rosen (1958) introduced (M,R)-systems to the world in 1958 in his very first published

scientific paper. They began as a class of metaphorical, relational paradigms that define cells.

M and R may very well stand for ‘metaphorical’ and ‘relational’ in modelling terms, but they

are realized as ‘metabolism’ and ‘repair’. The comprehensive reference is Rosen (1972, and

also Chapters 11–13 of Louie 2009). It may even be said that all of Rosen’s scientific work –

his lifelong quest being the answer to the question ‘What is life?’ – has arisen from a

consideration of topics related to the study of (M,R)-systems. This is because of the

Postulate of Life: A natural system is an organism if and only if it realizes an (M,R)-

system.

Here, the word ‘organism’ is used in the sense of a general living system (including, in

particular, cells). Thus, an (M,R)-system is the very model of life; and, conversely, life is

the very manifestation of an (M,R)-system (cf. Chapter 11 of Louie).

Metabolism is represented by mappings of the form f : A! B, whence its efficient

cause, an enzyme, with material input and output represented by the sets A and B.

In category-theoretic terms, metabolism is a morphism f [ H A;B
� �

, BA (where the

hom-set H A;B
� �

is a collection of mappings from set A to set B, and BA is the collection of

all mappings from A to B). Members of H A;B
� �

are the mappings that model metabolic

process, so clearly not all mappings in BA qualify; thus, H A;B
� �

is a proper subset of BA.

Repair may be considered as mappings that create new copies of enzymes f , hence,

under the one-gene–one-enzyme principle, genes that ‘repair’ the metabolism function.

Thus, repair is a morphism F with codomain HðA;BÞ; i.e. F [ H · ;H A;B
� �� �

,
H A;B
� �

_. Repair in cells generally takes the form of a continual synthesis of basic units of

metabolic processor (i.e. enzymes), using as input materials provided by the metabolic

activities themselves. In the simplest case, the domain of the repair map F is the codomain

of a metabolism mapping f , its ‘output set’ B, whence F [ HðB;HðA;BÞÞ , HðA;BÞB.

The simplest (M,R)-system, with one each of metabolism and repair components, may

therefore be represented by the diagram:

A�!
f
B�!

F
H A;B
� �

: ð2Þ

Metabolism corresponds to cellular activities that may collectively be called

cytoplasmic, while repair corresponds to cellular activities that are nuclear. One of the

decisive features of nuclear genetic activity in cells pertains to the replication of the

genetic material. One purpose of replication is to replenish the repair component should

the latter be damaged or otherwise diminished in efficiency. It is the genius of Rosen’s

(M,R)-system formalism that, without the intervention of ad hoc assumptions, the
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ingredients for such replication processes are already present. To replicate the repair

components there are many ways, which I will not go into here. The reader is referred to

Chapters 11–13 of Louie (2009) for the mathematical details. I shall, however, point out

that the standard process of semiconservative replication of nucleic acid is but one of the

many that can achieve the ultimate goal of repairing-the-repair in order to propagate the

living system. In other words, replication in an (M,R)-system may, but need not, be

realized as nucleic acid replication. It is also important to note that replicability is a

relational result; i.e. independent of any particular physical mechanism or realization.

One way of extending the diagram of the simplest (M,R)-system (2) is:

A�!
f
B�!

F
H A;B
� �

�!
b
H B;H A;B

� �� �
: ð3Þ

The magic of an (M,R)-system is that the replication mapping b [ H H A;B
� ��

,

H B;H A;B
� �� ��

may already be entailed in the original form (2). On the basis of what are

already present in (2), Rosen shows that ‘under stringent but not prohibitively strong

conditions, such replication essentially comes along for free’. An isomorphic

identification between the sets B and H H A;B
� �

;H B;H A;B
� �� �� �

(i.e. between b [ B

and b) is made – Rosen uses one due to the ‘inverse evaluation map’ with b ¼ b̂21.

The mapping chain (3) in its element-chasing form is:

a 7!
f

b 7!
F

f 7!
b

F ð4Þ

(where, naturally, a [ A), which then folds into the following graphic representation of a

cell, with the metabolism component as the abstract equivalent of ‘cytoplasm’ and the

repair component as the abstract counterpart of ‘nucleus’:

ð5Þ

In turn, graph (5) may be unfolded into the hierarchical cycle:

ð6Þ

(The terminology and symbology will be explained in later sections.)

While all the ingredients are present within an (M,R)-system, replication is,

nevertheless, not an obligatory feature of repair. Each entailment of replication from

metabolism and repair depends on some ‘stringent but not prohibitively strong conditions’

imposed on the mapping(s) involved. This in turn depends on the character of the entire set

H A;B
� �

with which we are dealing. It may be expected that these conditions for

‘entailment closure’ will not usually be satisfied, and hence that most (M,R)-systems
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cannot replicate. Thus, as we would expect, replication is a relatively rare and unusual

situation.

Since not all (M,R)-networks satisfy the stringent requirements for entailment closure,

those that do may acquire an adjective and be called replicative (M,R)-systems.

A hierarchical cycle similar to (6) is the closure that provides the ‘self-sufficiency in

efficient causes’ that defines replicative (M,R)-systems. The defining characteristic,

in other words, is the self-sufficiency in the networks of metabolism–repair–replication

components, in the sense that every mapping is entailed within; in short, closure to

efficient causation (another term that I shall explicate below). Henceforth, I shall use the

term (M,R)-network to describe a network of metabolism and repair components that is not

necessarily closed to efficient causation. I shall drop the adjective ‘replicative’ for (M,R)-

systems, whence all (M,R)-systems are replicative. (This is the sense in which the term

appears in the Postulate of Life.) I will, however, postpone the formal definition until after

the thorough discussion below on the defining properties.

Another noteworthy aspect of an (M,R)-system arises from the relation of the

replication map to the other mappings involved. Note that the first two of the three maps in

the chain (3) constitute our original (M,R)-system (2), in which f represents the metabolic

component and F represents the repair component. But one may also see that the second

two maps themselves constitute an (M,R)-system, except that now the original repair map

F plays the role of the metabolic component, and the original replication map b plays the

role of the repair component. From this, one sees the curious fact that there is nothing

intrinsic about the biological qualities of metabolism, repair, and replication; our

perception of them depends on the total system in which they are embedded. In fact, we

can imagine the chain (3) extending indefinitely on both ends, with any successive triplet

of mappings being an (M,R)-system, and in which any map could be either a metabolic

component, a repair component, or a replication map, depending on which triplet was

selected as primary. This relational result is explained in the algebraic-topological terms of

‘helical hierarchy’ in Section 6.21 of Louie (2009).

2. Morphisms

2.1 Mapping and its relational diagram

Let f [ H A;B
� �

be a mapping from set A to set B (i.e. f : A! B). When f is represented

in the element-chasing version f : a 7! b (where a [ A and b [ B), its relational diagram

may be drawn as a network with three nodes and two directed edges, i.e. a directed graph

(or digraph for short):

ð7Þ

The hollow-headed arrow denotes the flow from input (material cause) a [ A to output

(final cause) b [ B, whence the final cause of the mapping may be identified also as the

hollow-headed arrow that terminates on the output:

ð8Þ

The solid-headed arrow denotes the induction of or constraint upon the flow by the

processor (efficient cause) f , whence the efficient cause of the mapping may be identified

also as the solid-headed arrow that originates from the processor:

ð9Þ
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The formal cause of the mapping may be identified as the ordered pair kprocessor; flowl of

the two kinds of arrows:

ð10Þ

The processor and output relationship may be characterized ‘f entails b’, denoted by:

f r b; ð11Þ

where r is called the entailment symbol. The final cause b, the target of entailment r and at

the head of the hollow-headed arrow, is that which is entailed. A relational diagram is also

called an entailment network.

2.2 Composition

The relational diagrams of mappings may interact: two mappings, with the appropriate

domains and codomains, may be connected at different common nodes. (For an in-depth

study on the various modes of connections, see Chapter 5 of Louie 2009, and also

Louie 2010.)

Composition of two mappings involves the combination of their digraphs in such a

way that a final cause of one is relayed to become an ingredient of the other; i.e. when one

mapping entails some component of the other. Two of the interactions of two mappings

may be considered as compositions:

ð12Þ

and:

ð13Þ

The relational interaction (12) arises when one has two mappings f [ H A;B
� �

and

g [ H X;A
� �

, whence the codomain of g is the domain of f . Let the element chases be

f : a 7! b (thus f r b) and g : x 7! a (thus g r a), whence the final cause of g is the

material cause of f . The relational diagrams of the two mappings connect at the common
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node a as:

ð14Þ

This sequential composition of relational diagrams represents the composite mapping

f + g [ H X;B
� �

with f + g : x 7! b, and has the abbreviated relational diagram:

ð15Þ

whence the corresponding entailment diagram is:

f +g r b ð16Þ

(f +g entails b).

Next, the relational interaction (13) happens when one has two mappings f [ H A;B
� �

and g [ H X;HðA;BÞ
� �

, whence the codomain of g contains f . Because of this

‘containment’, the mapping g may be considered to occupy a higher ‘hierarchical level’

than the mapping f . Let the element chases be f : a 7! b and g : x 7! f , whence the final

cause of g is the efficient cause of f . Then one has the hierarchical composition of

relational diagrams:

ð17Þ

with the corresponding composition of entailment diagrams:

g r f r b: ð18Þ

Note that diagram (18) shows an iterative entailment of an entailment. A comparison of

(16) and (18) reinforces the graphical differences of diagrams (12) and (13), and shows

that sequential composition and hierarchical composition are different in kind: they are

different both formally and in content.

3. Hierarchical cycle

For a collection of mappings in a formal system, their compositions may give rise to a very

complicated pattern of inferential entailment in a network. The various network topologies

are explored in Chapter 6 of Louie 2009.

There is one mode of connection that is of special interest: when two or more

hierarchical compositions are involved in a cycle, i.e. a closed path. (Note that a closed

path in the directed graph sense means the arrows involved have a consistent direction.)

This is called a closed path of efficient causation. In other words, a closed path of efficient
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causation is an entailment cycle that contains two or more efficient causes. Both the

hierarchy of containment and the cycle are essential attributes of this closure.

For example, consider three mappings from a hierarchy of hom-sets

f [ H A;B
� �

; g [ H C;H A;B
� �� �

; h [ H D;H C;H A;B
� �� �� �

: ð19Þ

Their hierarchical compositions form the relational diagram:

ð20Þ

(where, naturally, a [ A, b [ B, c [ C, and d [ D). Now suppose that there is a

correspondence between the sets B and H D;H C;H A;B
� �� �� �

. Then an isomorphic

identification between b and h may be made, and a cycle of hierarchical compositions

results:

ð21Þ

In diagram (21), one may say that the hierarchical compositions of the three maps f ; g; hf g
are in cyclic permutation. The corresponding cyclic entailment pattern is:

ð22Þ

One may say that the diagram (22) represents the cyclic entailments:

g r f ; h r g; f r hf g: ð23Þ

Formally, one has the definition as follows.

Definition. A hierarchical cycle is the relational diagram in graph-theoretic form of a

closed path of efficient causation.

4. Complex system and clef system

Note that in a hierarchical cycle (for example, arrow diagram (21)), there are two or more

solid-headed arrows (since a closed path of efficient causation is defined as a cycle

containing two or more hierarchical compositions). A hierarchical cycle is by definition
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the formal-system representation (i.e. encoding) of a closed path of efficient causation in a

natural system, so trivially one has the lemma as follows.

Lemma. A natural system has a model containing a hierarchical cycle if and only if it has a

closed path of efficient causation.

Because of this equivalence of a closed path of efficient causation in a natural system

and a hierarchical cycle in its model, the term hierarchical cycle, although defined for

formal systems, sometimes gets decoded back as an alternate description of the closed path

of efficient causation itself. In other words, one may speak of a hierarchical cycle of

inferential entailments as well as a hierarchical cycle of causal entailments.

Definition. A natural system is simple if and only if it contains no closed path of efficient

causation.

The class of natural systems complementary to simple systems is therefore given by

the definition as follows.

Definition. A natural system is complex if and only if it contains a closed path of efficient

causation.

Equivalently, a natural system is complex if and only if it has a model that contains a

hierarchical cycle.

In formal systems, closed paths of efficient causation, i.e. cycles of entailment, are

manifested by impredicatives (or ‘self-references’). In science, where entailment means

causality, causal cycles empower a rigorous study on the categories of final causation,

whence on function and anticipation. To say that something is a final cause of a process is

to require the process to entail something. Final cause thus requires something of its effect.

Indeed, a final cause of a process must entail the entailment of the process itself.

(See, in particular, the discussion on ‘immanent causation’ in the last few sections of

Chapter 5 of Louie 2009.) It is this peculiar reflexive character of final causation that links

it intimately to impredicative, hierarchical cycles, in which the hierarchical compositions

are precisely ‘entailments of entailment’.

Note that a complex system only requires the existence of a hierarchical cycle that

contains two or more processes. There may be many of its constituent processes that are

not part of hierarchical cycles.

Definition. A natural system is closed to efficient causation if its every efficient cause is

entailed within the system.

Equivalently, a closed-to-efficient-cause system has a model in which all processes are

involved in hierarchical cycles. The equivalence also allows the description closed to

efficient causation to be used on formal systems.

Let me emphasize that the predicates contains ‘a closed path of efficient causation’ and

‘is closed to efficient causation’ are not equivalent. The class of systems that are closed to

efficient causation forms a proper subset of the class of systems that contain a closed path

of efficient causation. Members of the latter class, i.e. complex systems, are required to

have only some, and not necessarily all, processes involved in hierarchical cycles.

Instead of the verbose ‘closed-to-efficient-cause system’ or ‘systems that are closed to

efficient causation’, in Louie and Poli (2011) we have introduced a new term ‘clef system’

(for closed to efficient causation) with the definition as follows.
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Definition. A natural system is clef if and only if it has a model that has all its processes

contained in hierarchical cycles.

The word ‘clef’ means ‘key’; so this terminology has the added bonus of describing the

importance of the class of clef systems. Analogously, a clef formal system is one that has

all its mappings contained in hierarchical cycles. Thus, the class of clef systems forms a

proper subset of the class of complex systems.

5. Functors

The most important notion in the definition of an anticipatory system is that of a model.

A modelling relation is a commutative functorial encoding and decoding between two

systems. The situation may be represented in the following canonical diagram:

ð24Þ

in which the conditions:

i ¼ 1 cð Þ and c ¼ d + i + 1 ð25Þ

are satisfied. F is thence a model of N, and N is a realization of F.

A plethora of wondrous things follows from the establishment of a modelling relation

between systems. I shall not get into them here; details may be found in Rosen (1985) and

Chapter 4 of Louie (2009). The main conclusion, of course, is that one can use the

inferential structure of the model to study that of its realization, to impute from theorems i

in F an encoded hypothesis (via d + i + 1 in the diagram) back to causal entailments c in N.

Note that while one may refer to the imputation i! c as ‘prediction’, the predictive model

used in the definition of an anticipatory system requires more. (If ‘predictive model’

simply means this imputation, then it would have been a redundancy, since ‘all models

predict’ in this sense.) A model is not necessarily ‘predictive’ in the temporal sense: time

may not be explicitly involved in the sequencing of the congruence of inferential and

causal entailments. A predictive model is one in which time (i.e. its ‘internal clock’) runs

faster than its realization. (More on this in Section 7 below.) This extra qualification

makes the special class of predictive models a proper subset of the collection of all models.

The basic problem of theoretical science is the establishment of relations between a

real (physical, biological, social, . . . ) system and its models (or models that one can make

of that system). These relations are also important in our understanding the behaviour of

systems that contain models (of themselves, of their environments, of the future, . . . ) and

use these models for purposes of control. The existence of internal models (anticipatory or

otherwise) of self and environment is, indeed, an essential difference between biological

systems and their complement set. It is in this sense that one may say that organisms are

‘model-based’. The study of organisms is thus the study of the relations between them and

their models, whence relational biology. It is an unfortunate consequence of mechanism-

based science that in reductionistic haste, the presence of models has often been neglected.
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Now let us return to the canonical diagram (1) of an anticipatory system. I shall use the

same symbols S, M, and E for the object, model, and effector systems, respectively, to

denote their efficient causes. In other words, let each symbol represent the processor

associated with the block (the ‘black box’) as well as the block itself. Then the entailment

diagram for the anticipatory system is:

ð26Þ

The maps labelled with circled numbers correspond to those in diagram (1). The map

1 : S!M, completing the cycle, is the encoding of the object system S into its model M.

The entailment of the three maps M;E; Sf g in cyclic permutation renders this anticipatory

system complex.

An anticipatory system has more structure in its entailment pattern than the cycle:

S r M;E r S;M r Ef g: ð27Þ

In particular, the model-updating map 3 : E r
_
M, an inverse efficient cause, cannot be

present in every hierarchical cycle. Thus, ‘an anticipatory system must be complex;

a complex system may be anticipatory’.

6. (M,R)-network

I now have all the pieces with which to define an (M,R)-network. Let us revisit the

simplest (M,R)-system (2), but with an alternate description.

Metabolism may be considered an input–output system, with the mapping f

representing the transfer function of the ‘block’, the domain A as the set of inputs, and the

codomain B as the set of outputs. Thus, I may define a metabolism component as the

formal system M ¼ kA;H A;B
� �

l. (For the purpose of this paper, I shall simply define a

formal system as a pair kS;Fl, where S is a set and F is a collection of mappings with

domain S. The reader may delve into this subject of categorical system theory in Chapter 7

of Louie 2009.)

Similarly, repair may be considered an input–output system, with the mapping F

representing the transfer function of the block, the domain B as the set of inputs, and the

codomain H A;B
� �

as the set of outputs. Thus, I may define a repair component as the

formal system R ¼ kB;H B;H A;B
� �� �

l. Then the model network diagram of this simplest

(M,R)-system is:

ð28Þ

With the addition of entailment arrows for environmental inputs and outputs, and the

abbreviated representation by the symbols M and R of the components, I arrive at the

simplest example of what I call an (M,R)-network, i.e. a network of metabolism and repair
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components:

ð29Þ

Network (29) is a modified form of the ‘abstract block diagrams’ that Rosen started using

in his introductory (M,R)-systems papers (Rosen 1958, 1959), in which the emphasis was

on the networks of metabolism and repair components.

I now compile these concepts in the definition as follows.

Definition. Metabolism and repair are input–output systems that are connected as

components into a network. They are formal systems with the following further category-

theoretic structures.

(a) A metabolism component is a formal system Mi ¼ kAi;H Ai;Bi

� �
l.

(b) A repair component is a formal system Ri ¼ kY i;H Y i;H Ai;Bi

� �� �
l.

(c) A metabolism–repair network, i.e. an (M,R)-network, is a finite collection of pairs

of metabolism and repair components M i;Ri

� �
: i [ I

� �
, connected in a model

network with the following topology:

(i) the outputs of a repair component Ri are observables in H Ai;Bi

� �
of its

corresponding metabolism component Mi;

(ii) the metabolism components may be connected among themselves by their

inputs and outputs (i.e. by Bk , Aj for some j; k [ I);

(iii) repair components must receive at least one input from the outputs of the

metabolism components of the network (i.e. Yi ¼
Qn

k¼1Bik with n $ 1 and

where each ik [ I).

Note that the connections specified in (i)–(iii) are the requisite ones; an (M,R)-network

may have additional interconnections among its components and with its environment.

Finally, I can give the formal definition as follows.

Definition. A metabolism–repair system, i.e. an (M,R)-system, is an (M,R)-network that

is closed to efficient causation.

Stated otherwise, an (M,R)-system is an (M,R)-network that is also a clef system.

Note that the Axiom of Anticipation (that life is anticipatory) in Section 1.1 and

the result established in Section 5 (that an anticipatory system is complex) lead

syllogistically to

Rosen’s Theorem: An organism must be complex; a complex system may (or may not) be

an organism.

(cf. Chapter 11 of Louie 2009). Likewise, the Postulate of Life [that life is a realized

(M,R)-system] from Section 1.2, together with the formal definitions of complex system

and (M,R)-system, consistently lead to the same Rosen’s Theorem.

7. Prediction

It should be clarified that ‘anticipation’ in Rosen’s usage, embodied in the ‘predictive

model’, does not refer to an ability to ‘see’ or otherwise sense the immediate or the distant
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future – there is no prescience or psychic phenomena suggested here. Instead, Rosen

suggests that there must be information about self, about species, and about the evolutionary

environment, encoded into the organization of all living systems. He observes that this

information, as it behaves through time, is capable of acting causally on the organism’s

present behaviour, based on the relations projected to be applicable in the future. Thus,

while not violating time established by external events, organisms seem capable of

constructing an internal surrogate for time as part of a model that can indeed be manipulated

to produce anticipation. In particular, this ‘internal surrogate of time’ must run faster than

real time. It is in this sense that degrees of freedom in internal models allow time

its multi-scaling and reversibility to produce new information. The predictive model

in an anticipatory system must not be equivocated to any kind of ‘certainty’

(even probabilistically) about the future. It is, rather, an assertion based on a model that

runs in a faster timescale. The future still has not yet happened: the organism has a model of

the future, but not definitive knowledge of future itself. Indeed, the predictive model may

sometimes be wrong, the future may unfold very differently from the model’s predictions,

and the consequences of the mismatch may be detrimental to the anticipator.

Let me now reformulate the canonical diagram (1) of an anticipatory system. If one

traces the path of an input element a, the diagram becomes:

ð30Þ

and the corresponding output b will satisfy the functional equation:

b tð Þ ¼ S a tð Þ;E a tð Þð Þ;E M a tð Þð Þð Þ
� �

: ð31Þ

Within such generality, it is easy to see that it is possible to define many different

timescales. In particular, the internal surrogate of time in M a tð Þð Þ must run faster than the

external time t for M to be a predictive model.

8. Internal timescales in an (M,R)-system

In the simplest (M,R)-network (29), since there is only one metabolism component and

one repair component, the domain of the repair component is restricted to the codomain of

the metabolism component, i.e. Y ¼ B in requisite connection (iii) of the definition of

(M,R)-network. But with more components, for each repair component Ri there are more

choices for its domain Yi ¼
Qn

k¼1Bik . In particular, it is entirely feasible that in the product

of codomains, none of the Bik is Bi itself. Stated otherwise, while Ri repairs Mi, the

replenishment of Ri need not depend on Mi.

This brings me to the topic of dependency of metabolism and repair components, with

the definition as follows.

Definition. A metabolism component in an (M,R)-network is reestablishable if the

network has the capacity to replace it in the event of its absence. Otherwise, the

metabolism component is non-reestablishable.
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In graph-theoretic terms, a metabolism component is reestablishable if and only if

there is no directed path from it to its corresponding repair component. Thus, in particular,

the metabolism component M in the simplest (M,R)-network (29) is non-reestablishable.

Rosen (1958, 1959, 1972) and Chapter 13 of Louie (2009) all contain explorations into this

fascinating topic of (M,R)-systems. So I shall not repeat them here. I shall, instead,

specialize on the temporal aspects.

If the concept of separate internal timescales for metabolism and repair components is

introduced, then reestablishability takes on a new characterization. Even when a directed

path does lead from a metabolism component Mi to its corresponding repair component

Ri, the component Mi may still be replenished by its repair component Ri if Ri has a longer

operational lifetime. In such a case, Mi may be repaired by Ri before Ri perishes due to

lack of input from Mi, but then once Mi is repaired the input line to Ri is reestablished,

so that no irreversible damage occurs. In other words, the presence of ‘finite time lags’

(often manifest in natural systems as hysteresis) allows Mi to be rebuilt into the (M,R)-

network although Mi is graph-theoretically non-reestablishable.

We have, of course, just encountered the multiple scaling of time in the previous

section, in the context of anticipatory systems. When metabolism and repairs components

have different timescales, the resulting (M,R)-network therefore behaves temporally like

an anticipatory system. I shall next show the converse that the entailment pattern of an

anticipatory system may be represented as a relational network of metabolism and repair

components, thus completing an alligation of the two categories of objects with which we

began this paper in Section 1.

9. Effectors as repair components

The simple anticipatory system (cf. diagrams (1) and (30)) may be redrawn in graph-

theoretical form as the model network:

ð32Þ

Note that the set E of effectors functionally entails both the system S and the internal

predictive model M. If I fractionate E into the functional components ES that acts on S and

EM that acts on M, the model network (32) becomes:

ð33Þ
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which is recognizably an (M,R)-network S;ES

� �
; M;EM

� �� �
, with two pairs of

metabolism and repair components. The pair M;EM

� �
is the internal predictive model

of the anticipatory system (33), and has an internal timescale that runs faster than real time

(or at least faster then the clock of ðS;ES)).

10. The (M,R)-network of an anticipatory system

It is an opportune time to further explicate the concept of effector, since it assumes the

crucial role of repair component. With the iconic diagram (1), effectors were introduced

tersely in Rosen (1974), thus

We shall for the present suppose simply that the system M is equipped with a set E of
effectors, which allow it to operate either on S itself, or on the environmental inputs to S,
in such a way as to change the dynamical properties of S.

While effector may not be a common-usage term, it is in fact standard in control

theory, in which receptor and controller are the other two key components. The

relationship among the triumvirate is represented in the following control block

diagram:

ð34Þ

A receptor (which may also be called sensor in context) interacts with the

environment (i.e. accepts inputs) and encodes into percepts, information that is passed

on to the coordinating device. A controller (also coordinator, transducer) maps the

distinctions made by the receptor into actions. An effector implements a semantic

relation and carries out the instructed actions, thus produces an effect (i.e. releases

outputs) into the environment.

For a simple example, consider the withdrawal reflex of the human nervous system.

The input may be the stimulus of touch on a sharp object. The receptor is the pain sensory

neuron. The controller is the central nervous system. The effector is the muscle. The output

is the response of a movement of withdrawal.

The homeostatic regulation of body temperature through negative feedback offers

another example. Here, the input may be the stress of hyperthermia (i.e. overheating).

The receptor is the heat sensory neuron. The controller in this case is the hypothalamus.

The effectors are physiological responses such as increased activity in sweat glands and

increased blood flow to the skin. The effect is perspiration, which evaporates whence

cooling the skin.

From its definition and from the examples, one sees that an effector carries out the

actual response process, whence occupies the central role of ‘generating the efficient

causes’; i.e. repair in the (M,R)-network sense. If one revisits the definitions of the

‘anticipatory modes of behaviour of organisms’ and ‘anticipatory system’ in Section
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1.1, one sees that the ‘internal predictive model’ is the controller. It is, however,

crucial to remember that what defines an anticipatory system is not just the existence

of the predictive model – there are two indispensable ingredients: (a) predictive

model and (b) response to the prediction. It is interesting to note that these two

components have their analogies in an (M,R)-network precisely as (a) metabolism and

(b) repair.

A control block diagram with the predictive model M as the controller would look

like this:

ð35Þ

The response of the anticipatory system in accord with the model’s prediction

means that the control system unit (35) is iterated (for as many times as deemed

necessary). A control block diagram of an anticipatory system as an (M,R)-network

(33) may therefore be drawn thus (the circled numbers correspond to those in diagram

(1)):

ð36Þ
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The iteration in relational diagram (36) corresponds to an expansion of the entailment

cycles of diagram (33), highlighted below in solid lines:

ð37Þ

Relational diagrams (35) and (37), then, represent, respectively, the two defining

features of an anticipatory system: (a) predictive model and (b) response to the prediction.

11. The relational taxonomy

Rosen created the theory of anticipatory systems as a stepping-stone towards the ultimate

goal of the characterization of life. There is no question that the subject of anticipation

itself is of independent interest, far-reaching, and tremendously worthy of study. It must,

however, be remembered that the raison d’être of biology, hence of our relational

approach to the subject, is life itself. Stated otherwise, anticipatory behaviour is a

necessary, but not sufficient, condition for life. Live is anticipatory, but not all anticipatory

systems are living. Anticipation (or even the slightly more general ‘model-based

behaviour’) can only be used as an explanatory principle to some, but not all,

characteristics of living systems. Indeed, the behaviour of a living system is more often

characterized by its impredicativity (i.e. complexity), a property due to the existence of a

closed path of efficient causation, a property that an anticipatory system happens to share.

An anticipatory system is impredicative; an impredicative system may (or may not) be

anticipatory. Attributing too much to anticipation instead of impredicativity would

become an equivocation.

It is fitting to close this paper with a Venn diagram of the various classes of natural

systems that I have explicated herein:

ð38Þ

Note

1. Historical note: On 18 October 1972, the then-newly founded International journal of general
systems received four papers submitted by Robert Rosen (all prepared when he was a Visiting
Fellow at the Center for the Study of Democratic Institutions in Santa Barbara, CA, during the
academic year 1971–1972). Their final forms were accepted on various dates in 1973–1974 for
publication, and all appeared in Volume 1 (1974) of this journal (indeed, one in each of the four
issues). The idea of anticipatory systems was discussed in two of these papers. Although the
other paper (‘Some temporal aspects of political change’), since it was accepted sooner, actually
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appeared in print before the ‘Four fuzzy concepts’ paper, the latter was written earlier, whence
had precedence.
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