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This is an investigation of natural systems from the standpoint of the mathematical 
theory of categories. It examines the relationships which exist between different descrip- 
tions through measurement of observables and dynamical interactions. We begin with 
a category theory of formal systems with observables, and then proceed to a category 
theory of dynamical systems. The two categories are then combined to represent natural 
systems. Topological considerations enter in the study of stability and bifurcation phe- 
nomena. Special emphasis is placed on natural systems which model biological processes. 
The categorical system theory developed is applied to the analysis of several biological 
problems and biological system theories. 

1. Introduction. In his book The Scientific Outlook (1931), Russell 
described the 'scientific process' as composed of 

"three main stages; the first consists in observing the significant facts; 
the second in arriving at a hypothesis which, if it is true, would account 
for these facts; the third in deducing from this hypothesis further 
consequences which can be tested by observation." 

So according to Russell, the act of observation is basic to science. Intuitively, 
the notion of observable is attached to that of a concrete procedure for 
determining the value assumed by the observable of a system at a specific 
time. The crucial ingredient of any such procedure is a measuring instru- 
ment, which forms the basis both for our knowledge of the physical world 
and for our formulation of models which organize this knowledge and 
allow us to predict and control. 

Rosen (1978), the single greatest influence in the development of this 
work, provides a comprehensive theory of observables and the descriptions 
arising from them. The theory is then applicable to any situation in which 
objects of interest are labelled by definite mapping processes, measurement 
in physics, pattern recognition, discrimination or classification. All of these 
diverse situations share a common character: namely, the generation of 
numbers (or other kinds of invariants) which serve to label the processes 
with which they are associated, such that processes are considered 'the 
same' if and only if they bear the same label. This leads to the idea of 
observable-induced equivalence relations (Section 3). 
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It is suggested in Rosen (1978) that a formal treatment of systems with 
observables using category theory would be a fruitful undertaking. The 
engagement in this problem marked the beginning of my dissertation. But 
why stop at systems with observables? Since the process of observation 
ultimately rests on the capacity of a given system to induce a dynamics 
(i.e. a change of state) in a measuring instrument (alias meter, recognizer, 
discriminator, classifier, etc.), it seems natural to consider systems with 
dynamics as well. 

There is a reciprocity that exists in general dynamical interactions between 
systems. The process of measurement can be considered as a reciprocal 
induction of dynamics in both the system being measured and the system 
which measures. Then the basic problem in the analysis becomes this: to 
determine the observables through which a particular given dynamics is 
taking place, to specify the subsystems to which these observables belong 
and to identify the manner in which each of these subsystems is causing 
the others to change states. 

The concepts of linkage of observables, stability and bifurcation, and 
their connections with dynamics are also treated in this paper in the context 
of the category of natural systems, an amalgamation of states, observables 
and dynamics. The categories constructed have curious links with diverse 
branches of mathematics from topology to Galois theory, and provide a 
natural setting to discuss the modelling relation. There are also many bio- 
logical implications of categorical system theory. Among these, cellular 
dynamics, growth and aging and Rashevsky's (1972) organismic sets are 
given as examples. Other examples will appear in subsequent papers. 

Category theory is the mathematical tool used in this work. The basic 
definitions, treated in any one of the standard texts on the subject (e.g. 
Mac Lane, 1971), are assumed. 

2. Propositions. Throughout this study we will be dealing with three 
basic concepts: system, state and observable. Intuitively, a system is some 
part of the real world which is our object to study; a state is a specification 
of what our system is like at a particular time; and an observable of the 
system is some characteristic of the system which can, at least in principle, 
be measured. In other words, an observable of a system is a quantity which 
can induce dynamics in some appropriate meter. 

These three basic concepts are interrelated via two fundamental pro- 
positions which we shall take as axioms in all of what follows: 

PROPOSITION 1. The only meaningful physical events which occur in the 
world are those represented by the evaluation o f  observables on states. 
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PROPOSITION 2. Every observable can be regarded as a mapping from 
states to real numbers. 

Scientific activity usually starts with the collection of  observable phe- 
nomena within a given field. The significance of Proposition 1 lies in the 
word meaningful--because our information on a system is derived from 
what we can observe, hence what we cannot observe (in the generalized 
sense of creating percepts in our brains) will not be meaningful to us. 
This points also to the fact that as our means of  observation increase, the 
more 'alternate descriptions' we have on a system, the more insights in how 
and why things work we will have. 

To see why Proposition 2 makes sense, let us first quote Eddington 
from his Fundamental Theory (1949): 

"The whole subject matter of  exact science consists of pointer readings 
and similar indications; whatever quantity we say we are 'observing', 
the actual procedure nearly always ends in reading the position of  
some kind of  indicator on a graduated scale or its equivalent." 

In science the most common form of questioning nature is through experi- 
ments, and the answer often comes in numerical readings. 

It may well be that from the point of  view of scientific enquiry, the 
only way we can handle any entity is through the numbers associated 
with its measurement, which in turn is defined through the measuring 
instrument, the meter. This, in particular, is the view of Einstein on time. 
Such a definition of  t i m e - - a s  something dependent of  a measuring instru- 
m e n t - i s  called an operational definition. Borrowing the terminology, our 
two propositions are then saying that all our observables are operationally 
defined and all our meters are real-valued. 

It must be realized, however, that the operational definition of  scientific 
entities will enable us to investigate only certain aspects of science. Other 
questions are in principle unanswerable, i.e. they will not yield a measurement 
that gives an answer to the question. Such questions are then meaningless in 
the context of  scientific investigation. But the study of  those aspects amen- 
able to science based on operational definitions is enough to keep us busy 
forever. After all, the study of a model of  the whole of nature belongs to 
metaphysics, not science. 

3. Observables and Equivalence Relations. Let us consider the prototype 
situation, in which we have a set S of  states and a real-valued function 
f : S ~ 1R, which represents an observable, f induces  an equivalence relation 
Rf on S defined by 

slRfi2 iff f (s l)  = f(s2). 
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Clearly the quotient  set S/Rf is in one-to-one correspondence with the spectrum 
f(S). In general the observable f conveys limited information about  its 
domain S because by definition it cannot distinguish between states lying 
in the same equivalence class, and the set of  states of  our system would 
appear to be S/Rf. This is why 'alternate descriptions' of  a system are im- 
portant: the more observables we have, the more information we have on S. 

On the other  hand, the equivalence relations on S induce an equivalence 
"~ on ~(s,  the set of  all real-valued functions on S, as follows. For  f, g E ~  s ,  
define f "- g iff Rf = Rg, i.e. i f f f ( s l )  = f(s2) is equivalent to g(sl) = g(s2). 
Two equivalent observables 'convey the same information'  about  the ele- 
ments of  S; therefore we cannot distinguish between elements of  S by 
employing equivalent observables. Note, however, that f "~g only means 
that SIR I = SIR e, i.e. there is a one-to-one correspondence between f(S) 
and g(S) and there need be no relation whatsoever between the values of  
f(s) and g(s) for s E S. In particular, If(s1) -- f(s2)l small does not  imply 
Ig(s 1) --g(s2) I small. Thus if we are considering the metric aspects of  observ- 
ables (which we will do in later sections) we cannot pass to the equivalence 
classes in Rs/"~. But when we are only interested in the reduced states 
in S/Rf and not the specific values of  f (S) ,  it is more convenient to con- 
sider observables as elements of  ~s/.,.. One reason for this is that ]RS/"~ 
is a partially ordered set under the relation refinement. [Define f refines 
g, f ~< g, if f ( s l )  = f(s2) implies g(sl) = g(s~), i.e. if Rf C Rg for f, g E 1~ s. 
Then it is clear that ~< is reflexive and transitive on I (  s and hence is a pre- 
order. But f ~< g and g ~< f only implies Rf = Rg (i.e. f "~  g) and not f = g. So 
to make ~< antisymmetric one passes onto ](s/.~. Note that f ~< g and g ~<f 
i f f f ' ~  g. ] It is not uncommon in mathematics to consider equivalence classes 
of  functions instead of  the functions themse lves - - the  L v spaces, for example, 
are equivalence classes of  functions with f "~  g i f f f  = g almost everywhere. 

4. The Category S. We will now undertake a formal treatment of  systems, 
considered as abstract mathematical objects. We will be studying the pro- 
perties of  the category S of  (formal) systems and comparing them to those 
of  the category Ens of  sets. 

An object o f  S, a formal system, shall consist of  a pair (S, F), where S 
is a set and F is a set o f  real-valued functions on S. The elements of  S are 
the states and the elements of  F are the observables of  the formal system. 
We shall always assume 0 E F (where 0 is the 'zero function'  on S sending 
all states to the number  0), although for brevity we may sometimes omit 
0 when we list the elements of  F in specific examples. Thus we have F 
non-empty in order to avoid 'empty set pathologies'. The observable 0 is 
simply 'identifying the states in S'. Note that (0)~ is the greatest element 
in the partially ordered set (~(s/~, <.). 
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An S-morphism r E S((SI, ill), ($2, F2)) is a pair of  functions ~b E Ens(S1, 
$2) and r E Ens(F1, F2) such that  for all f E FI for all s, s ' E  $1, f ( s )= f(s') 
implies (r = (~bf)(Cs'), i.e. s Rf s' implies r Rot ~ ' .  

Note that  this 'compatibili ty '  condit ion is equivalent to saying for all 
G C F 1 for alls ,  s' E S I ,  s R  c s' implies ~bs Roo Cs', w h e r e R  a = n R f :  
f E G [hence s RG s' iff for all f ~_ G f(s) = f(s ' )]  and ~bG = { ~bf: f E  G} C 
/72. This means that  for all G C F1, ~b can be considered as a mapping from 
S1/Ra to $2/1%c. 

We always define ~b0 = 0. This is compatible because clearly 0s = (Is' 
implies 0(r = 0(r Note also that  for any observable f,  the assignment 
r  = 0 is acceptable. 

Define the identity I(S,F ) E S((S, F), (S, F)) by for all s ~ S s ~ s and 
for all f ~ - F f ~  f. (Thus for all G C F, G ~, G . )Then  clearly l(s,~ 3 satisfies 
the compatibili ty condition. 

Define composit ion of morphisms in S as simultaneously the composit ions 
on the states and on the observables, i.e. if ~b: (Sz, Fi)  ~ ($2, F2) and ~b: 
($2, F2) ~ (Sa, F3), define ff 0~" ($1, F1) ~ ($3, Fa) by for every s E S1 ~b *~b(s) 
= ~(q~(s)) and for every f E F1 f f~  qJ(~f). Note for f E F1 and s, s ' E  $1, 
s R I s' implies Cs Rof q~s', which in turn implies r162 R~o(or) ~O(~'); so 

~ satisfies the compatibili ty condition. 
Clearly composit ion so defined is associative, and for ~: ($1, ill) ~ ($2, F2), 

I(S~,F~ ) ~162 = ~ = ~b o 1 (S~,F,). 
If r ($1, F1) ~ ($2, F2) and ~b" ($2, F~) ~ (S~, F~) are such that  ~ko~b = 

1 (S,,F,) and r ~ = 1 (S,,F,), then it is easy to see that  r S~ ~ $2 and r F~ ~ F~ 
must  be bijections (Ens-isomorphisms) and that for f ~ F~ and s, s' ~ SI, 
f(s) = f(s') iff (q~f)(~s) = (~bf)(q~s'), i.e. for every G C F~ S~/R a = SJRcc. 

Thus isomorphic systems are abstractly the same in the sense that there 
is a 'dictionary'  (one-to-one correspondence) between the states and be- 
tween the observables inducing the 'same' equivalence relations on the 
states. In particular, if F and G are two sets of observables on S and there 
is a bijection ~b: F ~ G such that  for all f ~ F f  ~ eft, then the two systems 
(S, F) and (S, G) are isomorphic with the S-isomorphism Is" S ~ S, r F ~  G. 
Since categorical constructions are only unique up to isomorphism, in the 
category S all constructions (S, F) are only 'unique'  up to "--equivalent 
observables (i.e. one can always replace F by an ~-equivalent set of observ- 
ables G in the above sense), even when the set of  states S is held fixed. 

5. S-Products. Products in the category S do not always exist. For a 
family { (Si, F,.): i E I} the product  should be (S, F) = FI(S/, F/): ] E / ,  
with an / - tup le  of  S-morphisms of  the form ~rt: (S, F) -~ (Si, Fl). S is defined 
as the cartesian product  I/S/ of  the sets of  states. F is defined as the carte- 
sian product  IIF/ of  the sets of  observables interpreted as follows: for the 
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observable (fj:/" E 13 in F, it is a mapping from S to 11I defined by 

But S-objects can only have real-valued observables so the mapping f = 
(fi: J E /): S -+ 11! must be represented by an equivalent mapping from S 
to 11 (such that S/Rf  remains the same). In other words, we need a one-to- 
one map from (111)s to 11s which preserves the equivalence relations on S 
induced by the observables, or what is equivalent, an injection from 11! to 
11. An injection from 1t z to 11 only exists when the cardinality of  I is less 
than that of  11 ; thus S only has countable (including finite) products. Note, 
however, that the S-product is independent of  the choice of  the injection 
from 11i to 11 because the effect of  changing the injection is simply a switch 
from F to an "--equivalent set G, and (S, F) and (S, G) are isomorphic. 
Different choices of  the injection define different S-isomorphism class 
representatives of  the product. 

The projections are obviously defined by lri((sj: j E /)) = si and 7ri((fj: 
j E / ) )  = fi, and it is easily checked that the zr i are indeed S-morphisms. 

To see that (S, F) is a product,  consider an S-object (X, H) equipped with 
an / - tuNe  of  S-morphisms ~i: (X, H) ~ (Si, Fi). Then 

(s, F) ~ (S. F~) 

(X, H) 

we can define ~b: (X, H ) ~  (S, F) by for x E X ~b(x)= (~bi(x): j ~ / ) ,  and for 
h E H ~(h) = (~j(h): ] E / ) ,  where again ~b(h) is to be represented by a mapp- 
ing from S to 11 via the injection from 111 to 11. It is clear that 4~ is the unique 
map which makes the diagram commute.  (But q~ is, of  course, dependent 
on the choice of  the injection from 111 to 11 which determines the product 
(,7, F).) To see that ~ is an S-morphism, le th  E H  and x, x '  E X b e  such that 
h(x) = h(x'). Then for each i E I ((~ih)(~ix) = ((~ih)((~ix') because each ~b i 
is an S-morphism. Whence by definition (Oh)(~x) = (4)h)(c~x'). Thus x Rh x '  
implies 4~x Reh ~bx'. So (S, F) with the rris satisfy the universal property in 
the definition of  a categorical product. 

The final object in S is (1, [0}), where 1 is the singleton set, the final 
Ens-object. The unique S-morphism from any system to (1, [0}) is clearly 
the one which sends all states to 1 and all observables to 0. 
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6. An Application: Linkage. Let S be a set of  states and f, g E I~ s be 
observables. Let pf: S ~ SIR r and pg: S ~ S/Rg be the natural quotient 
maps. For (s)f E S/Rf consider the set of  Rg-classes which intersect (s)f, 
i.e. the set 

pgpil(s) f  = [ (s')g : f (s ' )  = f(s)} = [ (s')g : (s')g 0 (s)f 4= 0}- 

Then we define: 

(i) g is totally linked to f at (s); if the above set consists of  a single Rg- 
class [ necessarily (s)g ; i.e. f (s)  = f(s ')  implies g(s) = g(s') ]. 

(ii) g is partially linked to f at (s)f if this set consists of  more than one 
Rg-class, but is not all of  S/Rg. 

(iii) g is unlinked to f at (s)f if this set is S/Rg. 

Also, we say g is totally linked to f i f  it is totally linked at each (s)f and g 
is unlined to f i f i t  is unlinked at each (s)f.. 

From the above definition it is immediate that g is totally linked to f iff 
R I refines Re, which is equivalent to the existence of an S-morphism from 
(S, [f}) to (S, [g}), which sends each s E S  to itself and s e n d s f t o g ,  for the 
latter statement means precisely that f (s)  = f(s ')  implies g(s) = g(s'). 

For a set of  states S equipped with two distinct observables f and g 
there is another equivalence relation on S other than R; and Rg which is 
of  in teres t - -namely ,  the intersection Rfg = Rf O Rg. The relation Rfg 
is defined by s Rfg s' iff f (s)  = f(s ')  and g(s) = g(s'). Note that there may 
not be an observable of S which generates the equivalence relation Rfg, 
i.e. although mathematically there exists h C k s such that Rfg = Rh, the set 
of  all possible observables of S, as a representation of  a natural system, may 
not be all of  k s . Thus Rfg is generally a formal construction. 

There is always an embedding 4: S/Rfg -+S/Rf X SIR e which maps (s)fg 
((s)f, (s)g). Via this embedding a state s E S is represented by the pair of  
numbers (f(s), g(s)). This embedding 4~ is in general one-to-one but it is 
onto i f f f  and g are totally unlinked (to each other). 

This product representation can be constructed neatly as a categorical 
product. Consider the two systems (S, [f ,  0}) and (S, {g, 0}). The S-product 
of  these two systems is (S • S, F) where F = [ 0, (f, 0), (0, g), (f,, g)} C ~sxs ,  
with the natural projections. Now consider further the system (S, [f, g}). 
There exist S-morphisms 

and 

r (S, [f,  g~) -+ (S, {f, 0}) 

~b2: (S, {f, g } ) ~  (S, {g, 0}) 

defined by for every s E S 
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01(s) = s; 0 a f = f ,  01g = 0 
and 

02(s) = s; r  = 0, 02g = g. 

So we have the following diagram: 

(S X S, F) 

/ 
(S, {f, 0}) 

N ~  2 

(s, {g, 0}) 

/5 
(s, if, g}) 

Hence by the universal property of  the product  there exists a unique 0: 
(S, {f, g}) ~ (S • S, F) which makes the diagram commute .  Namely, 0 is 
defined by sending s E S to 0(s) = (s, s), the diagonal map, and by Of = 
(f, 0), 0g = (0, g). In particular, 0 being an S-morphism implies that  0: 
S/R{f,g} -+ S • S/R{o,,o),(o,g)} It is clear that  0 is a one-to-one mapping (on 
S) and that  R{~g] = Reg; hence S/R{f,g} = S/Reg. Also, S X S/R{~o),(o,g)} 

SIR e X S/Rg. Thus O is indeed the one-to-one map from S/Reg to S/Rf • 
S/R e, and that  the degree of  'onto-ness'  of  O is an indication of  the lack of  
linkage between f and g. 

7. A Partial Order in S. Let ($1, FI) and ($2, F2) be S-objects. Then we 
define (S1, FI) ~ ($2, F2) if (i) (Sl, Fl )  is a monosubobjec t  of  ($2, F2), i.e. 
there is a mono  0: ($1, F1) ~ ($2, F2); i.e. 0 :S1  "-+ 5'2 and 0: FI>-~ F2 are 
injective functions;  and (ii) $1 and F 1 are finite sets. 

It is clear that  < is reflexive on 'finite S-objects', i.e. on (S, F) where S 
and F are finite sets, and that  ~< is transitive. Now suppose ($1, FI) ~< ($2, F2) 
(with mono  0) and ($2, F2) ~< ($1, F1) (with mono  ~). Then 0: Sl ~ $2 and 
0 : F 1  -+ F2 would be injections between finite sets of  the same cardinality, 
and hence are onto.  So 0: Sx ~ $2 and 0: Fl ~ F2 are Ens-isomorphisms. 
Further,  the compatibil i ty condit ion in the definition of  S-morphisms 
implies that  S1/Rf = S2/R~f for every f ~ F 1. Thus (S1, F1) is isomorphic 
to ($2, F2) and so ~< is ant isymmetric  (up to isomorphism).  Therefore ~< is 
a partial order on (the isomorphism classes of) the finite S-objects. 

How can we interpret  the s ta tement  (SI, F1) ~< ($2, F2)? First, we have 
$1 >--' $2 and in fact, for every s E $1 and every f E F1 (s)e>+ (0S)oe. So there 
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is a possibility of new states appearing in the whole set and/or in each 
equivalence class. This reflects growth in some respect. The possibility 
that F2 -- r  is non-empty indicates the emergence of  more observables 
as the system becomes 'more advanced'. In particular there is the poss- 
ibility that s RF, S' in Si but there is a g E F2 -- $(F1) such that g($s) 4= 
g($s'); so states indistinguishable before could be separa ted- -a  model of  
differentiation. On the other hand, it could happen that f(s) 4= f(s') in 
(S1, FI) but  (~bf)(~) = (q~f)(~x') in ($2, F 2 ) - - a  model of  integration or 
fusion. Also, since in this case 'distinct' states become indistinguishable, 
there is an indication of  decay, or 'loss of  recognition abilities'. 

So it seems that with an appropriate totally ordered subset of  this par- 
tially ordered set of finite systems, a model of  the development-senescence 
process could be constructed. We shall look at this again later. 

Condition (ii) in the definition of  ~< (that S~ and F a are to be finite sets) 
looks like a very severe mathematical restriction. But in mathematical 
modelling of  natural systems, a finiteness restriction is not unrealistic: 
all we require is that the sets are finite, and there is no restriction on how 
small the sets have to be. So the sets could be singletons or have 101~ ele- 
ments or 10 l~176 elements or whatever and still be finite. After all, Jeans 
(1945) defined the universe as a gigantic machine whose future is inexorably 
fixed by its state at any given moment,  that it is "a self-solving system of 
6N simultaneous differential equations, where N is Eddington's number".  
Eddington (1939) asserted (perhaps with more poetry than truth) that 
N = 2 • 136 • 2 2s6 ( ~ 1 0  79) is the total number of  particles of  matter in 
the universe. The point is that it is a finite number. Thus the set of  states 
of  a natural system is certainly finite at one time (this is not to be confused 
with the set of  all possible states a system can have), and the set of  observ- 
ables on a system at one time is also clearly finite. 

8. Dynamics and the Category D. A dynamics on a set of  states S is a one- 
parameter group (with time t E ]R being the parameter) of  bijections on S, 

T = [ Tt E A(S): t E JR}. 

The domain of  the dynamics T is the product set S • ~ .  
We now turn to the category D of dynamical systems. A D-object is a 

pair (S, D), where S is a set (of  states, the phase space) and D is a set of  
dynamics on S. 

We always assume that the trivial dynamics Is, which sends every x E S 
to itself for every t E ]R, is in D; so, in particular, D is always non-empty. 
But again for brevity we shall sometimes omit listing Is in specific examples. 
Note that if a dynamics is considered to be imposed on S through inter- 
actions with the states of  other systems, then Is can be considered as being 
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imposed on S through interaction with the (only) state in S/Ro, where 0 is 
the 'zero' observable as in Section 4. 

A D-morphism ~ E D((SI, Da), (Sz, D2)) is a pair o f  functions ~: $1 ~ $2 
and q~: D1 -+/)2 (with cMsl = Is~), and such that for every T E D 1 and every 
t E JR, the diagram 

commutes  (i.e. for every x E S 1 (~(Tt(x)) = (~Tt((~x)). Composition of  D- 
morphisms is defined via compositions of  functions component-wise on the 
states and on the dynamics. 

9. Dynamics and Equivalence Relations. Let T be a dynamics on S. T is 
compatible with an equivalence relation R on S if xRy  implies Tt(x)RTt(y) 
for every t. 

If T is compatible with the equivalence relation R on S, then T induces 
a dynamics T'  on the set of  'reduced states' S' = S/R; for any equivalence 
class (X)R E S' and t C JR, let Tt(x)R = (Tt(X))R E S'. The dynamics T'  
is called the quotient dynamics on S' induced by T. Note that the equation 
Tt(x)R = (Tt(X))R states that the diagram 

S X ~ S' 

S -~S' 
X 

Tt' (1) 

commutes  (where X: S ~ S' is the quotient  map x ~+ (x)R). So X: (S, [ 7}) 
(S', {T'}),  sending each x E S  to (x)R E S '  and sending T t o  T ' , i s a D -  
morphism. 

There are two complementary questions which can be asked on the 
connection between dynamics and equivalence relations on S: 

(i) Given a dynamics T on S, how can we characterize those equivalence 
relations R on S with which T is compatible? 

(ii) Given an equivalence relation R on S, how can we characterize those 
dynamics which are compatible with R? 

The simpler case when one considers bijections ( 'automorphisms')  T: S ~ S 
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instead of  dynamics was discussed in Rosen (1978) (in which a bijection 
T: S ~ S is defined to be compatible with an equivalence relation R on S 
if s R s' implies Ts R Ts'). It was shown that the set of  all equivalence 
relations with which a given bijection T: S ~ S is compatible forms a sub- 
lattice of  the lattice R(S) of all equivalence relations on S, and that the 
set of  all bijections compatible with a given equivalence relation forms 
a submonoid of  the group A(S) of  all bijections on S; further, the set of  
all bijections compatible with R, and whose inverses are also compatible 
with R,  forms a subgroup of A(S). (Note that when both T and T -1 are 
compatible with R, then s R s' iff Ts R Ts'.) 

Let us first expand on these ideas. Define a subset A of  A(S) to be com- 
patible with a family R of equivalence relations on S if for each T E A, 
for each R E R, and for all s, s' E S, s R s' implies Ts R Ts'. 

We shall now try to answer these two questions: 

(i*) Given a subgroup G of  A(S), what are the equivalence relations on 
S with which G is compatible? 

(ii*) Given a sublattice L of  R(S), what are the bijections on S such that 
they and their inverses are compatible with L? 

The same argument used to obtain the results for bijections can easily 
be generalized to answer these questions. The answer to (i*) is a sublattice 
of  R(S) which includes the equality relation '= '  and the 'universal' relation 
'S 2' defined by s S 2 s' iff s, s' E S. Since every bijection is compatible with 
= and S 2, it is without loss of  generality to (and hence we shall) only con- 
sider sublattices which contain both of  these relations. The answer to (ii*) 
is a subgroup of  A(S). In fact, this correspondence between the set of  all 
sublattices of  R(S) and the set of  all subgroups of  A(S) turns out to be 
bijective and order (qua substructures)-inverting. We can represent this 
situation by the following self-explanatory diagram: 

[ I I 
, 4, . 4, 
1,~ ~ GI~--~ G2" ~ A(S) 

Further, we can define that an equivalence relation R'  on S is conjugate 
to another equivalence relation R on S if there is a bijection T: S -+ S such 
that s R'  s' if and only if Ts R Ts', in which case we shall write R '  = R T. 
Conjugacy is equivalent to the existence of  an isomorphism between the 
collections of equivalence classes SIR and SIR', i.e. there is a bijection 
between the equivalence classes in SIR and SIR' and corresponding equi- 
valence classes contain the same number of  S-elements. 

Let L be a sublattice of  R(S). Then we can define a conjugate of L to be 
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LT = { R r  : R E L } for some T E A(S). With these definitions we have the 
following lemma. 

LEMMA. I f  (L, G) is a pair o f  corresponding sublattice-subgroup with 
respect to compatibility, then the conjugate (Lr, T-aGT) is also a pair 
o f  corresponding sublattice-subgroup with respect to compatibility. 

Proof. Let R E L and U E G. Then for s, s' E S, 

SRTS' iff  TsR Ts' [definition of  R T ] 
iff(UTs)R(UTs') O[(R,  U) E (L, G)] 
i ff  (TT -1UTs)R(TT -1UTs') [ TT -1 = ls ] 
iff  (T -1UTs)RT (T -1UTs') [definition of  Rr ] 

Thus T -1 UT and (T -a UT)-I are both compatible with RT. �9 
The above results bear a striking resemblance to the Galois theory of  

field extensions and automorphism groups! 

10. Discrete Dynamical Systems. Before going further, let us take a digres- 
sion in the following direction. Suppose instead of  considering 'time' as the 
continuum of  real numbers we consider time as being composed of  a succes- 
sion of  'elementary steps'. Then we can define a discrete dynamics on a 
set S to be a one-parameter group T = { T,, : n ~ Z } of  bijections from S 
to S, with the set of  integers Z representing the time parameter. It is clear 
that for each n E ~ ,  T,, = (7'1)n. Thus alternatively we can define a discrete 
dynamics to be the cyclic subgroup of  A(S) generated by a bijection T = 
7"1 E A(S), i.e. a discrete dynamics is (T)  = { T n : n E Z } C A(S). With this 
terminology, the powers of  T in (T) become interpretable as instants o f  
logical time, and the transition x ~ Tx, or Tn-l x ~ Tnx in general, is an 
elementary step of  the dynamics. Further, with appropriate modifications, 
all the dicussions on the category D still go through with ~( replaced by Z 
and we would have the category of  discrete dynamical systems instead. 

This situation is, o f  course, closely related to the 'continual'  dynamical 
system as a one-parameter group of  bijections T = { Tt: t E ]R} on a phase 
space S. For  any real number r we can consider the cyclic subgroup gener- 
ated by T~. Then (T) = { T n = T,~: n E Z } defines a discrete dynamics on 
S. This method of  'discretization' is used, for example, in obtaining numeri- 
cal solutions of  differential equations. Note, however, that this procedure 
only goes one way: we can obtain a discrete time from a continuous time 
by choosing the size of  an elementary step t = r, but starting from a discrete 
dynamics (T), in general we cannot embed it into a continuous one-parameter 
group of  bijections. A further discussion of  this aspect can be found in 
Rosen (1982). 
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Now let us try to answer questions (i) and (ii) in Section 9 for discrete 
dynamics. 

Given a discrete dynamics (T)  = {Tn: n E 2Z }, T E A(S), since ( T ) i s  
in particular a (cyclic) subgroup of A(S), the results of  Section 9 tell us that 
the set of  all equivalence relations with which (T)  is compatible forms a 
sublattice of R(S). It is easy to see that (T)  is compatible with an equiva- 
lence relation R on S iff both T and T -1 are compatible with R, so we only 
need to check the compatibility of  the generator and its inverse with R. 

Since given an equivalence relation R on S, the set of  all bijections on S 
compatible with R and whose inverses are also compatible with R forms a 
subgroup G of A(S), the set of  all discrete dynamics on S compatible with 
R is the collection of all cyclic subgroups of G, i.e. the collection of all 
homomorphic images of  ( Z ,  +) in G. 

Finally, we will try to answer, at least partially, the two questions in 
Section 9 for continual dynamical systems. 

Given a dynamics T on S, the collection of  bijections { Tt: t E 11 } is a 
subgroup of  A(S). Thus the set of  all equivalence relations with which T 
is compatible is a sublattice of  R(S). 

The second question is more difficult. Given an equivalence relation 
R on S, we obtain a subgroup G of  A(S) of  all bijections on S compatible 
with R. Now we have to find subgroups of G which are (isomorphic to) 
continuous one-parameter groups indexed by I1. Whereas for the discrete 
dynamics case we can get the set { { T n :  n E Z }: T E G} quite easily, here 
there is no trivial way to look for homomorphic images of  (I1,  +) in G. 
Note, however, that there is at least one dynamics compatible with R, 
namely the trivial dynamics Is = { Is: t E ~ }  C G. 

11. Observables and Induced Topologies. Let f be an observable on the set 
of  states S, i.e. f: S ~ I1. In the construction of  the category S we could 
have used equivalence classes of  functions in R s / ~  as observables (Section 3) 
because there the only relevant property o f f  was the equivalence relation 
R I it imposed on S. But such a definition of  S-objects apparently leads to 
difficulties in some categorical constructions and creates problems in topo- 
logical considerations. 

But we should recall the comments in Section 4 and note that for f, g E I t  s 
and f ~ g (i.e. Rf = Rg), (S, {f}) and (S, {g}) are isomorphic in S, and 
because all constructions in a category are only 'up to isomorphism', these 
two S-objects (and any constructions with one or the other) are 'indis- 
tinguishable' in S. What properties of f E I1 s are hidden if we consider 
(f)~ E lts/'~ instead? We see that since 1t is a topological space (with the 
usual topology), f: S ~ 1t can induce a topology on S, called the f-topology, 
as follows. A subset of  S is f-open (respectively, f-closed) iff it is the inverse 
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image under f of  an open (respective, closed) subset o f  JR. The f- topology 
is the coarsest topology on S which renders f continuous. 

For  any constant function f (i.e. for f ~ (0)~ E ]~s/~) the f - topology is 
the indiscrete topology (qS, S} on S, and in general if the range of  f is a finite 
set, then any representative of  the class ( f )~ induces the same f- topology 
on S, and so there is a unique ' ( f )~- topology ' .  But if the range of  f is in- 
finite, then it is possible for f(S) to have limit points, in which case different 
class representatives of  ( f )~ may induce different topologies; hence one 
has to consider f ~  ~ s  and not ( f )~ E R s / ~  in topological considerations. 

Further,  since ~ is a metric space, a 'distance function'  on S can be 
defined using f. Namely for x, y E S, define dr(x, y)  = If(x)  - - f ( y )  I. It 
is clear that dr(x, x) = 0, that 0 ~< dr(x, y)  = dr(y, x) < +oo and that d I 
satisfies the triangle inequality. But dr(x, y) = 0 only means f (x)  = f(y)  
and not  necessarily x = y, so df is a pseudometric on S and is a metric iff 
f is injective. Obviously, the f- topology on S is the pseudometric topology 
generated by d I and the quotient  f - topology on SIR r is the induced metric 
topology. Note that if x E G C S where G is f-open and dr(x, y)  = 0, then 
y E G .  

Historically, the ideas of  limit and continuity appeared very early in 
mathematics, notably in geometry, and their role has steadily increased 
with the development of  analysis and its applications to the experimental 
sciences, since these ideas are closely related to those of  experimental 
determination and approximation. But since most  experimental determina- 
ations are measurements, i.e. determinations of  one or more numbers, it is 
hardly surprising that the notions of  limit and continuity in mathematics 
were featured at first only in the theory of  real numbers and its outgrowths 
and fields of  application. So in a sense topology has its roots in the process 
of  measurement (i.e. observations) and it is interesting to note that we are 
now using topology as a tool in the study of  the fundamentals of  measure- 
ment and representation of  natural systems. 

12. Continuity and Compatibility. Let S be a set, T a dynamics on S and 
f E IR s an observable. Define T to be f-continuous if T is a continuous 
dynamics on S with the f- topology,  i.e. if T: S • IR --> S is continuous. 
Recall that T is compatible with the equivalence relation Rf (or simply T 
is compatible with f )  if for all t E ]R and for all x, y E S, f (x)  = f (y )  implies 
f(Tt(x)) = f(Tt(Y)). The concepts of  f-continuity and compatibili ty are 
related as follows. 

THEOREM. Let T be a dynamics on S a.nd f E ~s .  I f  T is f-continuous, 
then T is compatible with f 

Proof If T is f-continuous, then each Tt is continuous on S with the 
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f-topology. This means that for all x E S and for all e > 0 there exists a 6 > 0 
such that d/(x,  y)  = If(x) - - f ( y ) l  < 6 implies d/ (T t (x ) ,  Tt(Y)) = [ f (Tt(x))  -- 
f ( T t ( y ) ) l  < e. Now let x and y E S be such that f (x )  = f (y) .  Then for every 
e > O, d:(x, y )  = If(x) - - f ( y )  I= 0 < 8(e). Hence d:(Tt (x) ,  Tt(Y)) = [ f (Tt(x))  -- 
f (Tt (y) )  [ < e; so I f (Tt (x))  - - f ( T t ( y ) ) l  = 0, whence f ( T t ( x ) )  = f (T t (Y ) ) .  Thus 
T is compatible with f. �9 

It is clear that the converse of  this theorem is not true. 

13. The Category o f  Natural  Systems. The categories S and D, representing 
the static and dynamic aspects of  natural systems, are now amalgamated 
into a category denoted by N. Explicitly, an N-object, a natural system, is 
a triple (S, F, D), where (S, F)  is an S-object and (S, D) is a D-object. 

We shall also consider S as a set on which different topologies can be 
defined. In particular we shall consider the topological spaces (S, r), where 
r can be the f- topology for any f E F. 

q5 E N((S:, Fl, D:), ($2, F2, D2)), i.e. q5 is an N-morphism, ifq~ E S((SI, F1), 
($2, Fz)) and 4~ C D((S1, Dl) ,  (Sz, D2)). Thus q~ is a mapping of  the sets 
S1 ~ S~, F l -+ F2 and D: ~ D 2 such that on (S, F)  it satisfies the conditions 
of  Section 4 and on (S, D) it satisfies the conditions of  Section 8, 

We do not impose any relations for q~ on (F, D). So, for example, T E Dl 
may be f-continuous for some f E FI, but  ~T E D2 is not required to be 
4~f-continuous; and we can have T compatible with f but ~bT not  compatible 
with q~f, and so on. 

The identity N-morphism I(S,F,Z~) is clearly the amalgamation of  l(s,O and 
l(s,D), i.e. I(S,F,D) sends eachx  ~ x E S, f ~ f E F and T ~  T E D .  

Composition of N-morphisms is defined 'component-wise' and is clearly 
associative with identity I(S,F,m. 

If q~: ($1, F1, Dl)  -+ (Sz, F2, D2) iS an N-isomorphism, then ($1, FI) and 
(SE, F2) are S-isomorphic and (Sl, DI) and (SE, t)2) are D-isomorphic. Note 
that even between N-isomorphic systems the continuity and compatibility 
properties of the dynamics and observables are not necessarily preserved. 
This is due to the fact that the observables are less 'well-behaved' and that 
"~-equivalent observables, which are not necessarily topologically equivalent, 
are S-isomorphic. This apparent shortcoming, contrariwise, turns out to be of 
great interest; some of these 'bifurcation phenomena'  will be discussed next. 

14. B(furcations. The N-object (S, F, D) contains many different mathe- 
matical descriptions of  the same system. There are many interesting ques- 
tions about  their connections one can ask: How do the descriptions of  S 
obtained from one set of  observables I f: ,  f2, �9 �9 �9 fn } compare with those from 
another set {gl, g2, �9 �9 �9 , gm }? How can one combine these descriptions to 
obtain a more comprehensive picture of  S? To what extent does a knowledge 
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that two states s I and s~ appear 'close' under the pseudometric on S induced 
by { f l ,  f2,  �9 �9 �9 , fn } imply that these same states appear close with respect 
to {gl ,  g2, �9 �9 �9 ,gm }? How does a dynamics T appear when viewed through 
an observable f?  And conversely, how does an observable appear after the 
passage of dynamical process? 

These questions are intimately related to the notions of  s tabi l i t y  and 
b i furca t ion  (Thorn, 1975) and devolve once again to the notion of  linkage 
(Section 6), and thence back to the essence of  the modelling relation itself. 

In Section 6 we considered those relationships among observables f, g . . . .  
based on the concept of  linkage, which depends only on the equivalence 
classes of  the relations Rf ,  R e,  . . .. Lack of  linkage leads to 'state transi- 
tions' s ~ s', which are undetectable by f (i.e. f ( s )  = f ( s ' ) )  but are detected 
by g (i.e. g(s)  ~ g ( s ' ) ) .  

Next we shall try to answer the question: If s is 'close' to s' under (the 
pseudometric f- topology induced by) f,  when will s also be close to s' under 
g? Thus we are considering the extent  to which a state transition s -* s' 
which is 'almost' undetectable by f (i.e. I f ( s )  - -  f(s ' ) l  is small) is likewise 
almost undetectable by g (i.e. Ig(s) --g(s ' ) l  is small). 

Def in i t ion .  Let f, g be observables on S and dr, d e be the corresponding 
induced pseudometrics (Section 11). The state s E S is a s table  p o i n t  o f  g 

w i t h  respec t  to f if for every e > 0 there exists a 6 > 0 such that for s' E S, 
df(s, s') = if(s) - - f ( s ' )  I < 6 implies dg(s, s') = Ig(s) --g(s ' ) l  < e. 

The definition is equivalent to each of  the following: 

(i) the identity map of  the set S from (S, dr) to (S, dg) is continuous at s; 
(ii) the f-open neighbourhood system of  s refines the g-open neighbour- 

hood system of  s; 
(iii) (roughly) every state 'f-close' around s is also 'g-close' around s. 

The following results are clear: 

(a) If s E S is a stable point o f g  with respect to f then (s) r C (s)g. 

(b) If s E S is a stable point of  g with respect to f and s' E (s)f,  then s' is 
also a stable point o f g  with respect to f .  

(c) The set of  stable points o f g  with respect t o f i s  an f-open subset of  S. 

Def in i t ion .  The complement  of  the set of  stable points of  g with respect 
t o f i s  the bi furca t ion  se t  o f g  with respect to f .  

Intuitively, near a bifurcation point of  g with respect to f,  the proximity 
of  two states s and s' as viewed by the observable f does not imply their 
proximity as viewed by g. In other words, the bifurcation set is the set of  
states at which the g-description does not  agree with the f-description in 
their metrical aspects, i.e. the two descriptions convey essentially different 
information. 
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It follows from (c) above that the bifurcation set of  g with respect to f 
is an f-closed subset of  S. Also, it is clear that the bifurcation set of  g with 
respect to f is empty iff the f- topology is finer than the g-topology on S, 
in which case Rf refines Rg. 

In the previous discussion we can interchange the role of  f and g and 
obtain the opposite concept of  stable and bifurcation points of  f with 
respect to g. These are, in general, quite different from those obtained from 
g with respect to f. Thus, given a pair of  observables, we obtain two distinct 
notions of  stability and bifurcation, depending on which description is 
chosen as the reference. 

Let us consider the case when f and g are two observables on S such that 
the bifurcation sets of  f with respect to g and of  g with respect to f are 
both empty.  Then ls:  (S, dr) ~ (S, dg) is a homeomorphism and df  and dg 
are equivalent pseudometrics, i.e. f and g induce the same topology on S. 
Under these circumstances it is appropriate to say that f and g are topo- 
logically equivalent (as opposed to algebraically equivalent: f ~ g when 
Rf = Rg). Note that by result (a) above, topological equivalence implies 
algebraic equivalence; but not conversely. Stated another way, we have the 
following theorem. 

THEOREM. I f  two observables induce the same topology on the set o f  
states, then they are totally linked to each other. 

15. Incompatibility. We say in Section 9 that when a dynamics T on 
a set S is compatible with an equivalence relation R on S, T induces a quot- 
ient dynamics on the set of  reduced states SIR. In this section we shall 
investigate what happens when a dynamics T is not compatible with an 
equivalence relation R in the special case when R = RF, where F is a family 
of  observables on S. 

If T is not compatible with RF, then there are states s, s' E S for which 
S R F s', but for some t E R Tts and Tts' are not Rr-related. That is, Tsplits 
equivalence classes of  RF. Putting it another way, the two indistinguishable 
states s and s' (under F) have now 'differentiated' through the action of  the 
dynamics T, and this differentiation is visible using the observables in F. 
(The term 'differentiation' is used deliberately here to suggest the connec- 
tion of  this with biological differentiation. See Section 19.) 

From the viewpoint of  an observer equipped with meters for observables 
in F, the states s and s' appeared to be the same. But through the course 
of  the dynamics T the observer detects two different states T~s and Tts'. 
It would appear that the same initial state under the same conditions has 
given rise to two distinct states, a contradiction to causality. The problem 
here is, of  course, that one usually assumes that one has a complete set of  
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observables F for the description of  S (i.e. S I R  F = S, or RF is the equality 
relation). The standard way out  is to pull in statistics and to observe many 
copies of  (s)R~- under the passage of  T. The relative frequencies of  the 
resulting states (Tts')RF (where s' E (S)RF) are then associated with tran- 
sition probabilities from s to Tts'. In other words, the incompatibility of  
T with R is usually interpreted in stochastic terms. 

One can (rather boldly) make the suggestion that all processes occuring 
in nature are deterministic and that the apparent stochasticity is simply 
a consequence of  employing an incomplete description as if it were com- 
plete. So one does not need statistical tools i f  one has a complete descrip- 
tion of  the system. But that is a rather big 'if' because we are limited in 
our means of  observation, measurement and understanding, and to obtain 
a complete description of  every natural system is really to find the philo- 
sopher's stone! Thus statistics plays a role in science as a matter  of  neces- 
sity. Further  discussions of  the interplay between causality and chance 
can be found in Bohm (1957) and also in Belinfante (1973) on the theory 
of  'hidden variables ~. 

16. Stability and Commutativity. We just considered the situation when 
a 'change of  s t a t e ' s  ~ s' which is undetectable by an observable f b e c o m e s  
detectable by the observable g = fo Tt. This, of  course, is again intimately 
related to the concept o f  linkage. After all, given an observable f and a 
dynamics T on S, for each t E ]R fo Tt is an observable on S. To say that 
F is compatible with R f  (i.e. f )  simply means that Rf  refines each RfoTt, 
or that each fo Tt is totally linked to f. 

With this in mind, the next natural question to ask is: If s is close to s' 
under f ,  when will s also be close to s' under f after the action of  a dy- 
namics T?. This problem can then clearly be studied by reducing to con- 
sider stable and bifurcation points of  fo Tt with respect to f. And the result 
from the previous sections can be appropriately modified and used. 

Since the compatibili ty of  T with f is equivalent to the commutativi ty 
of  the diagram (1) of  Section 9, the study of  stability and bifurcation can 
be formulated in the category N as the 'approximate commutat ivi ty '  of  
this diagram. 

Finally, there is an interesting possibility that a state s E S can be a 
stable point  of  f~  with respect to f for all t less than a 'critical time' 
te, and then for t > tc s becomes a bifurcation point of  f ~  t with respect 
to f .  In other words, at t = tc we have a catastrophe [in the sense of  Thorn 
(1975)] .  Alternatively we can consider t E l~ as an 'order parameter '  and 
at t -- t, we have a 'change of  scheme' from an old structure to a new struc- 
ture through an instability. This area is a further topic of  investigation 
and we shall not deal with it here. A good reference set is the Springer 
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Series in Synergetics, especially the introductory Vol. 1 (Haken, 1978) 
and Vol. 4 (Gfittinger and Eikemeier, 1979) on Structural Stability in 
Physics. 

17. Cellular Dynamics. We come now to the final subject of  this paper. 
We want to show how the mathematical formalism of categorical system 
theory we developed may be applied to various biological topics. Let us 
consider an example of  a natural s y s t e m - - a  set equipped with a collection 
of observables and a collection of  dynamics. What is more natural, in biology, 
then to begin with a cell? Differences among cells can be referred to dif- 
ferences in their molecular constitution ultimately specified by their genome, 
and hence to differences in the relative concentrations of constituent mole- 
cules. Thus it is reasonable to suppose that the state variables in terms of 
which we describe a cell at a particular instant of  time shall be concentra- 
tions of  chemical substances. These are observables of the cell. 

Chemical substances interact with one another and their concentration 
will be changing in time. The 'cellular dynamics' are given by the set of 
differential equations 

dx___i = f ~ ( x , , . . . ,  x, ), (1) 
dt 

where the xis denote the concentrations of  the chemicals in the cell and the 
functions ft are determined by the specific reactions. The stability and bi- 
furcation properties of such a dynamical system (1) may then be directly 
interpreted in terms of cellular behaviour. Further, the functions f/, which 
specify the rate of change of each of the state variables, are themselves 
observables of  the cell. 

There are plenty of  other examples in biology of sets equipped with observ- 
ables and dynamics: one only has to go up the hierarchical 'ladder' and 
consider tissues, organs, organisms, ecosystems and so on. And it is this 
abundance of natural systems that leads to the use of categories as the 
mathematical tool of  organization. 

Category theory also provides a natural framework in which to analyse 
the important concept of  subsystem, via the categorical definition of sub- 
object. For example, a subgroup of a group is not simply any subset: it 
has to satisfy the group axioms, i.e. it has to be a group itself. Similarly, 
not  every subset of  a natural system can be a subsystem: it has to be a system 
itself. In particular, the dynamics restricted to the subset have to remain 
as dynamics; equivalently, the subset has to be functionally isolable. This 
is, for instance, the situation involved in the concept of  the active site of 
an enzyme. The active site is dynamically linked to the rest of  the enzyme 
(one theory being that it is simply a local maximum of the energetics) and 
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cannot  be separated by any physical procedure.  Fract ionation destroys the 
enzyme dynamics. In other  words, the concept  of  an active site only makes 
sense in the larger domain of  an enzyme, the former not  being a natural 
system itself. 

18. A Partial Order in N. Let ($1, F1, D1) and ($2, F2, D2) be N-objects. 
Then define ($1, FI, D1) ~< ($2,/72, D2) if 

(i) there is an N-mono ~: ($1, FI, DI) ~ ($2, F2, D2); i.e. q~: $1>--> $2, FI >--> F2 
and DI>--> D 2 are injective functions; and 

(ii) S 1, F 1 and D 1 are finite sets. 

Note first that  if ($1, /71, DI) ~< ($2, F2, D2) then (Sx, F1) ~< ($2, F2) in S 
(Section 7). Also, since S 1 is a finite set, for each f E F 1 f(Sl)  is a finite 
subset of  R ,  and hence any representative of  the class (f)~ induces the 
same f- topology on $1. In other  words there is a unique ( f )~- topo logy  on 
S1 (Section 1 1). 

It is clear that  ~< on the finite N-objects [i.e. on (S, F, D), where S, F and 
D are finite sets] is reflexive and that  ~< is transitive. It is also clear, using a 
similar argument  as in Section 7, that  if ($1, F1, DI) ~< ($2, F2, D2) and 
($2, F2, D2) ~< (Sl, F1, DI) then the N-monos involved are in fact N-iso- 
morphisms.  So ~< is ant isymmetric  (up to isomorphism, as usual). There- 
fore ~< is a partial order on (the isomorphism classes of) the finite N-objects. 

19. Growth and Aging as a Partial Order. What does this partial order ~< 
in N have to do with development  and senescence? Since (St, Ft, DI) <~ 
($2, F2, /92) in N implies in particular that  ($1, Ft)  ~< ($2, F2) in S, we can 
include the discussions from Section 7. Let us see what we have. 

With an N-mono r (SI, Ft, DI) ~< ($2, F2, D2), the possibility that  r is not  
onto  models growth. If $2 -- 4~($1) is not empty,  then more elements (states) 
have appeared in the second system, an increase in size. If F2 -- 4~(F1) is non- 
empty ,  then there are more observables in the second system, an increase in 
complexity. If  D2 -- q~(D1) is non-empty,  then more dynamics can be imposed 
on the second system, an increase in interactive ability. Collectively, the 
appearance of  these new modes of  structures, organization and behaviour 
falls into the description of  the sometimes-puzzling biodynamical phen- 
omenon  termed emergence. 

S t When g ~/72 -- q~(Fl ) and s, s' E $1 are such that  s RF, but  g(q)s) 4= g(Cs'), 
indistinguishable states in Sa are now separated in $2 because of  an increase 
in complexi ty,  an alternate description. When T E D1 is compatible with 
Rp, but  ~bT is not  compatible with some g E F2 (Section 1 5), we have the 
case that indistinguishable states in S~ become separated in $2 because of  an 
interaction through an additional dynamics. Both of  these cases indicate 
the presence of differentiation going from (S t, Ft, DI) to ($2, F2, D2). 
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Supposing now s, s' E Sx and f E  F t are such that f(s) 4:f(s') yet (~f)(~bs) = 
(~)9(r then distinct states become ~the same'. Also, when a dynamics is 
not compatible with an equivalence relation different equivalence classes 
may appear to 'fuse' together in the course of  the dynamical process. These 
serve as models for biological integration when interpreted 'positively' 
and for decay ('loss of  information') when interpreted 'negatively'. 

When a change of continuity properties occurs going from (Sv FI, Dx) to 
($2, F2, D2), e.g. when T is f-continuous (T E Dl, f ~ F1) but ~T is not 
~f-continuous, or when the linkage between ~f  and ~g is different from 
that between f and g (.f, g E Fx) etc., it could be interpreted as change of 
biological structures and functions. This kind of  apparently discontinuous 
change in biological systems again falls into the area of 'emergence'. The 
generation of emergent novelties is highly characteristic of  biological 
systems, and in our formalism of categorial system theory it is a natural 
consequence of the definition of ~<. 

With all of  the above in mind we can now make a formal definition of 
aging and growth. 

Definition. Let (S 1, /71, D1) and ($2, F2, D2) be finite natural systems. 
Then ($1, F1, D1) is younger than (S 2, F2, i)2) (and the latter is older than 
the former) if (S x, F 1, D t) <~ ($2, F2, D2). In other words aging is defined 
as the partial order ~< on the finite natural systems. 

The more we know about aging, the more irreversible a process it seems 
to be. That is why ideas from irreversible thermodynamics and dissipative 
systems are used to model aging [see, for example, Richardson (1980)]. 
The irreversibility of aging is captured in the above definition. If ($1, F1, Dx) 
<<- ($2, F2, D2), then, of  course, in general we do not have ($2, F2, D2) <~ 
($1, F1, D1). Indeed, if the latter holds we would have (Sa, F1, /)2) -~ ($2, 
F2, D2) in N, in which case the two systems are of the 'same age'. So the 
partial order ~< gives a unidirectionality of  aging and growth. 

Note, however, that it is possible that there is a subsystem (S, F, D) of 
(~($1), ~(F1), O(Dl)) C ($2, F2, D2) on which ~-1 exists and is an N-mono. 
In other words, aging results from properties and relations of whole systems, 
and it does not forbid the possibility that one or more of the component  
subsystems gives opposite contributions. Aging is a collective (cooperative) 
phenomenon of  many processes, some of  which may appear to defy aging. 

20. The Concept o f  the Organism. When one thinks of collective phenomena 
in which the discrete constitutive individuals are modified in their behaviour 
through interactions among one another to fit into the pattern of a larger 
collective set, and the whole is more than and different from a simple 
addition of  its parts, living organisms would seem to be the ideal example. 

A view of  the organism is from that of  organic behaviour, in the context  
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of  a relational biology, as conceived originally by Rashevsky (1960). On the 
integrative aspects of  behaviour, it was Rashevsky's idea that the organisms 
are recognized as such because we can observe homologies in their behaviours, 
regardless of the physical structures through which these observations are 
made. Thus all organisms manifest the same set of  basic and ubiquitous 
biological functions, and through this manifestation organisms can be 
mapped on one another in such a way as to preserve these basic relations. 
This idea led to the formulation of  Rashevsky's principle of  biotopological 
mappings and Rosen's (categorical) (34, R)-systems (Rosen, 1972). On 
the adaptive and predictive character of  organic behaviour, one is led to the 
classical (optimal) control theory (Rosen 1980) and Rosen's theory of  
anticipatory systems (Rosen, 1982). 

Along these lines of relational biology, the following is a description 
of  the developmental processes of an organism from a categorical stand- 
point. 

Definition. Let L consist of: (1) a collection [Li = (S,., F,., /9/): i E I = 
[0, 1 ] } of  N-objects such that for i ~</in L Li ~ L / i n  N (so in particular the 
Lis a r e  'finite' N-objects); and (2) for each pair i, j E I with i ~<j, a horn set 
L(Li, Lj) containing a single N-mono ~ii: Li -+ Lj, such that for i ~<j ~< k in L 

L i ~ ~- Lj ~ ; Lk 
\ / '  

(~ki 

~)kj ~ ~)ji = ~)k i 

and if i > j  in I then there is no N-morphism in L from L i to Li: i.e. L(Li, 

/;i') = 0 f o r / > / .  
It follows from (2) that for each i E I, { ~bii = 1Li} = L(Li, Li). Thus L is 

a subcategory of  N and the set of  L-objects is totally ordered by ~<. 
Definition. An organism is a natural system which is (a realization of) L 

for an appropriately chosen family {Li} of  N-objects and an appropriately 
chosen collection { q~i} of  N-monos satisfying the definition of  L. 

Considering the results we have from the discussions on aging, it is quite 
reasonable to make the above definition of an organism from the standpoint 
of  categorical system theory. The totally ordered set (I, <.) is an index of 
age and the order ~< on L is the process of  aging. The instant i = 0 can be 
considered as the moment  of  conception of  an organism (when life begins) 
and the instant i = 1 is death. The developmental processes of  the organism 
are reflected in the systems (Si, Fi, Di), the morphisms q}i, and in particular 
in the evolution of  the systems as the index i E ! increases from 0 to 1. 

It is an appropriate place here to mention a new subject of  study started 
by Rosen (1982): that of  antic(patory systems. The basis for this theory is 
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the recognition that most (if not all) of  the biological behaviour is o f  an 
anticipatory rather than a reactive nature. Let us see if our definition of  
an organism has incorporated into it this anticipatory character. From 
the total order on the set of  L-objects we can conclude that certain things 
cannot happen as the organism develops (i.e. as i increases). For example, 
it cannot happen that f ( s )  = f (s ' )  but (c~]~(c~iis) 4= (r162 it cannot 
happen that T 4= T' but  c~/iT = (~iiT' and so on. So this list of  impossible 
happenings can be considered as a prediction of  things to come (or, rather, 
not  to come). Also, the linkage imposed on the states by the dynamics 
coupled with causality determines how a present state can be regarded as 
a model of  a future state. There are many qualities like these one can list. 
A formal study of  'the category of  anticipatory systems' is a perspective 
for the future. 

21. Organismic Sets. Organismic sets were built by Nicolas Rashevsky 
as a representation of  biological organisms and societies on a relational 
basis (Rashevsky, 1972), and a wide range of  biological and social phe- 
nomena were explained within this framework. 

The idea was first started by the observation (!) of  the remarkable rela- 
tional similarities among physics, biology and sociology. The phenomena 
are properties of  collections of  things that are capable of  performing certain 
activities which result in certain products. This led to the suggestion of  
the existence of  a conceptual superstructure of  which physics, biology 
and sociology are three parallel branches, each partially isomorphic to the 
other two. This conceptual superstructure is an organismic set. 

Even before we formally define what an organismic set is, we can see 
that the setting is perfect for a category theory to be postulated. After all, 
we are looking at a class of  mathematical objects with the same structure. 

Definition. An organismic set is a finite set S such that: 

(1) Corresponding to each element e i E S there is a set Si" of  activities 
which ei is capable of  performing, and there is a set Sp of  products 
which e i can make. 

(2) The set of  all potential activities S a = U S f  and the set of all products 
! 

S p = US]' of  the organismic set both have cardinality greater than one. 
i 

(3) In a given environmentE at a given time t, each e; only exhibits a proper 
subset Sf (E,  t) of  S f  and makes only a proper subset S f (E ,  t) of Sf .  
This models adaptation and development  as E and t vary. 

(4) S is partitioned into three disjoint subsets S 1, $2 and $3 such that 
S -- $3 = $1 U $2 is a 'normal' organismic set in itself (i.e. $3 and its 
associated S~ and S~ are the apparently 'useless' parts of  the organismic 
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(5) 

(6) 

set S) ,  S - -  $2 is an organismic set which can exist but  will not  develop 
and $1 is the core  of  the organismic set so that S -- $1 cannot exist 
(i.e. S~ and S~ are necessary and sufficient for at least a short-range 
existence of  S). 
Taken alone, i.e. removed from S, each e i E S has a surv iva l  t i m e  

t~ during which they can exist without  the availability of  S p. t i is 
short compared to the life span of  S. 
Elements in S p (i.e. products) act on various e~s and so induce a non- 
empty  set of  relations SR within S. It is these relations that make us 
recognize an organism or a society as such. Members of  SR are in 
general k-ary relations with k ~> 2. 

The above is a very much simplified version of  Rashevsky's original formal 
definition of  organismic sets. At tempts  to study organismic sets using 
category theory were made [see Baianu (1980) for a list of  references], but 
ordinary categories did not  seem to be sufficient and the theory of  'super- 
categories' was developed. For our purpose we shall simply consider the pieces 
we took and see if we can fit them into the formalism of  our category N. 

22. Organ i smic  Category .  Let O be the category of  organismic sets; i.e. 
an O-object is an organismic set S. The elements e t E S can be considered 
as 'states' of  the system S. Members of  the sets S a and S ~ can be con- 
sidered as 'observables' on S. In particular the relations in Sn can be in- 
terpreted as the observable-induced relations. Although the real-valued 
requirement of  the observables is not met in this case, one can always 
'digitize' S a and S p and impose artificial numbers on them (as in G6del 
numbers). Of course, this digitization has to be done in such a way that 
there is minimal loss of  information. This situation is perhaps similar to 
that of  numerical taxonomy when we give numerical values to the different 
taxa. The activities and products in S a and S p can also be considered as 
dynamics induced on the system. Even the survival time t; o f  each e i can 
be interpreted as the 'inherent dynamics'  o f  the element. Thus the map 
S ~  (S, F = S a t3 S p ,  D = S a U S p U { ti}) is one on the objects of  a functor  
O ~ N. The various other properties of  S can be looked upon as further 
structures on the objects; in other words, O can be studied as a category 
of  N-objects with structure. 

What, then, are the admissible N-morphisms q~ between organismic sets 
S and S'? Besides the usual requirements of  being an N-morphism (which 
implies r S -+ S', S a ~ S~ a, S~ ~ S~ p , and { t i }  ~ { t~}), we would like it 
to preserve the other structures as well. Thus we want r  t ) )  C S]a(E, t ) ,  

~p t r t 
r t ) )  C Si (E, t )  and ~: $1 ~ $I ,  S: ~ S: ,  $3 ~ $3 etc. With such a 
definition O-isomorphic objects would then be abstractly identical organismic 
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sets. Admittedly the above contains many hand-waving arguments. But the 
O ~ N association looks rather promising, and the O-morphisms do indeed 
look like the transformation between abstract diagrams representing bio- 
logical systems, i.e. the biotopological mappings between graphs of  organisms 
(cf. Rashevsky, 1960). The above should be able to acquire mathematical 
rigour upon further 'hard' analysis. 

23. Epilogue. Let me end this paper by pointing out that it represents 
part of  a larger field of  studies of  relational biology started by Rashevsky. 
It was his insight to recognize that our direct interest in biological systems 
is primarily function and behaviour, not structure. Rosen studied general 
cellular organizations in this context  in his metabolism-repair systems 
(Rosen, 1958). The natural systems studied in this monograph share a 
common feature with the (M, R)-systems in that they are characterized 
completely in functional and organizational terms, entirely devoid of  physical 
structure. Moreover, the base sets (state spaces) have no a priori  algebraic 
structure and hence c a n  be particularized to various specific examples 
when they are further equipped with linearity, topologies and so forth. 
The treatment is of  a formal character and interesting consequences in- 
clude the many possible physical and biological interpretations (i.e. real- 
izations) of  the formalism, some of  which are discussed in the last few 
sections. Other will follow. 

"Any particular or isolated biological phenomenon or group of  phe- 
nomena admits of  necessity an explanation in terms of  a mathematical 
model" (Rashevsky). 

I thank Professor Robert  Rosen for his inspiration. 
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