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Preface 

This volume is made up of three short essays, each separately conceived 
and written, each with distinct thrusts and emphases, but nevertheless 
closely related in substance and spirit. The purpose of this brief introduction 
is to describe some of these relations, which are both personal and scientific. 

Let us turn first to the scientific threads that relate the three contributions. 
Although very different in emphasis and in thrust, they all spring from a 
common concern: to grasp and comprehend the material basis of living 
systems. I believe that we each began with a conviction that contemporary 
physics already contained the necessary universals with which to cope with 
the phenomena of life and that therefore only a clever rearrangement and 
redeployment of these universals would suffice to bring them to bear eflfec-
tively on biology. I believe that we each came separately, and with great 
reluctance, to admit the possibility that this conviction might not be true, 
and hence that a true theory of the organism required new physics and new 
epistemology. And again separately, we realized that the measurement pro
cess, which lies at the very heart of every mode of system description, pro
vides perhaps the only safe and fundamental point of departure for building 
a comprehensive theory, not only of organisms, but of natural systems in 
general. This premise is the primary thread that binds the essays in this 
volume together. As Dr. Richardson likes to say, such an approach restores 
to our fragmented sciences the kind of integration and unity they possessed 
in an earlier time, when scientists regarded themselves as natural philoso
phers. 

In his essay, Dr. Richardson casts his analysis of the measurement process 
into an elegant dualism relating modes of description and explores the con
sequences of this really remarkable dualism for what we may call classical 
physics. But the dualism he develops pertains to any kind of description; rich 
as it is in the familiar contexts of classical physics, it becomes still richer when 
treated as a universal principle and brought to bear on organisms. 

Dr. Louie explores the deeper consequences of representing the properties 
of natural systems through states built up out of observable quantities and 
the dynamics that such systems impose on each other through interactions. 
The natural mathematical universe for exploring these consequences is cate-
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gory theory, a mathematical discipUne that is in a formal sense the general 
theory of modelling and that inthis application provides both the mathemati
cal tool and the best example for exploring relationships between systems. 
His work provides the natural bridge between Dr. Richardson's essay and my 
own; he explicitly describes a number of these relationships in the course of 
his development. 

In my own essay, a rather radical viewpoint is adopted, motivated from 
several different considerations. One of these is my continuing involvement 
with relational biology, which is described in some detail. Another was my 
concern with systems that can anticipate, more specifically, ones that con
tain internal predictive models of themselves and/or their environments, 
whose predictions can be utilized to modify and control present activities. 
Still another is an attempt to construct a dictionary relating the language of 
physics (forces, potentials, fields) with the informational language (code, 
program, computation) so characteristic of biology, by using the concept of 
stability as Rosetta Stone. Consideration of these problems, separately and 
together, led ultimately to the suggestion that our traditional modes of sys
tem representation, involving fixed sets of states together with imposed 
dynamical laws, strictly pertains only to an extremely limited class of sys
tems (which I call simple systems or mechanisms). Systems not in this class I 
call complex, and these can only be in some sense approximated, locally and 
temporally, by simple ones. Such a radical alteration of viewpoint leads to a 
large number of concrete, practical consequences, some of which are de
scribed in the essay. 

All of these essays are the products of their authors' association with the 
Biomathematics Program of the Department of Physiology and Biophysics 
at Dalhousie University in Halifax, Nova Scotia. This program has become 
known as the Red House because it is housed in quarters that are, in fact, red. 
The creation of this program was largely the work of one of the authors, I. W . 
Richardson. Through his initiative, effort, and energy, he was able almost 
single-handedly to carve out, for a perhaps brief but precious time, what I 
regard as one of the most innovative and fruitful programs for research and 
teaching in theoretical biology in the world. 

I became associated with the Red House in 1975 when, again largely 
through Dr. Richardson's efforts, I was offered a Killam Professorship at 
Dalhousie University. I found that Dr. Richardson had created an ideal 
atmosphere, an ambience that almost compelled those who experienced it to 
think, study, learn, and write beyond the edge of the known. I had experi
enced such ambiences before, at Chicago under Rashevsky and at Buffalo 
under J. F. Danielli. There are others, but they are few. 

The Red House program has over the course of time attracted some 
extraordinary students. One of these is Dr. Aloisius Louie, whose contribu-
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tion to this volume is essentially his doctoral dissertation. I w^ould normally 
strongly discourage any student, however bright, from undertaking a disser
tation involving a major epistemological component; dissertations are risky 
enough without that. But Dr. Louie is a very special case; he thrives on such 
risks and languishes without them. Indeed, it will be seen from the definitive 
discussion he presents of the category-theoretic roots of system analysis that 
he has been from the outset a colleague rather than a student. 

It is thus with a certain sense of pride that we collectively offer this volume, 
not only for what novel scientific material it contains, but also as a specimen 
of the output of the Red House program and as a symbol for what such 
programs can accomplish. This last is important, for it is precisely the scien
tific strengths of such programs that also make them vulnerable, in constant 
threat of engulfment by the sands of the vast academic deserts which sur
round them. 

W e hope that these essays will provide the reader with some food for 
thought and will convey some of the electricity and excitement, as well as the 
practical import, of doing theory. 
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LIST OF SPECIAL S Y M B O L S 

The symbols listed below are followed by a brief statement of their meaning. The standard set-
theoretic symbols are not included here. 

C General category f<g iff Rf Rg, refinement 
C{A,B) Hom set s Category of formal systems 
f:A^B Morphism (S,F) Formal system 

Composition of morphisms F Set of observables 
dorn f Domain 0. Constant observable 

Identity morphism S-morphisms 
r ' Inverse morphism RG = nRf:feG 

Isomorphic objects eq( / , ^ ) Equalizer 
Ens Category of sets Coequalizer 
B^ = Ens(/l,ß) f.Ay^B Monomorphism 
Gp Category of groups XB Characteristic function 
Top Category of topological f'.A-^B Epimorphism 

spaces Partial order in S 
Mon Category of monoids 
Ab Category of abelian groups Μ Meter 
F : A - B Functor Group of automorphisms 
QOp Dual category on S 
J-op Opposite morphism D Category of dynamical 

Covariant hom-functor systems 
Contravariant hom-functor Τ Dynamics 

Cat Category of (small) t Time 
categories Bounds of Γ at X 

u Identity functor U = [ - 00, + OO], extended 
F ^ : B - > A Inverse functor real numbers 
a.F^G Natural transformation Is Trivial dynamics 

Functor category yx Solutions of a dynamics 
n^, Product Trajectories of a dynamics 
Ui'.A-^ Ai Projection τ Translations of a dynamics 
Σ Statement {S,D) Dynamical system 

Dual statement D Set of dynamics 
UA, Coproduct D-morphisms 
ij'.Aj^A Injection Φ X IR :(Χ,Ί)Η-.(ΨΧ,Ί) 
S Set of states Natural numbers 

Observables Image factorization system 
u Real numbers Lattice of equivalence 

Rf Equivalence relation relations on S 
induced by / Rr Conjugate equivalence 

f - g iff Rf = Rg, algebraic relation 
equivalence Lr Conjugate lattice 
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Ζ Integers Activities of S 
= {Γ":ΑΙ 6 Ζ } , discrete Products of S 

dynamics Specialized subsets of S 
τ Topology Survival time of ̂ , 

/-induced pseudometric Product-induced relations 
E'.N-^S Modelling relation o Organismic category 
Ν Category of natural systems V Vector (inner product) space 
(S,F,D) Natural system V* Dual vector space 
Φ, Ψ Linkage relations Contravariant vectors 
{S,,F,,D,)< Partial order in Ν a,a' Covariant vectors 

R - a F Dyad 
L Organism T\{V) Tensor space of type (1,1) 
Li L-objects over V 
Φα L-morphisms R = I.a'F, Dyadic ( = response tensor) 
Κ Structured category R S Double dot product 
Κ ( Χ ) K-structures on X [a^.. . ,a'"] Description space 

K-structure |R| = ( R : R ) * ^ ^ norm of R 
Κ (σ ,τ) K-admissible C-morphisms Square-integrable functions 
Κ Category associated with Κ R Category of description 
S Organismic set spaces 

Element of organismic set Vect Category of vector spaces 
Activities of R(a) = Rin [a^. . . ,a'"] 

5r Products of e, 

I . I N T R O D U C T I O N 

"Where shall I begin, please your Majesty?" he asked. "Begin at the beginning," the King 
said, very gravely, "and go on till you come to the end: then stop." 

Lewis Carroll, Alice in Wonderland 

The single greatest influence in the development of this work is the book 
"Fundamentals of Measurement and Representation of Natural Systems" by 
Professor Robert Rosen (1978, Elsevier North-Holland, Inc., New York). 

I have always been more interested in "conceptual" biomathematics than in 
looking at specific models of a biological process. In other words, my interest 
is oriented more toward the logic of mathematical biology. During the course 
of many stimulating discussions with Professor Rosen, we talked about the 
theories of measurement, recognition, discrimination, interactions, bifur
cations, and classifications, and above all, he taught me the importance of 
the idea of alternate descriptions (Rosen, 1976) of a system. After having 
learned to think plurally and after having read the book (Rosen, 1978), it 
became quite natural to me to work on the problems of measurement, 
interaction, and representation from the standpoint of the theory of 
categories, which is the logical mathematical tool to be used when one studies 
a collection of objects with similar structures. 
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In his book The Scientific Outlook (1931) Bertrand Russell described the 
"scientific process" as composed of three main stages; the first consists in 
observing the significant facts; the second in arriving at a hypothesis which, if 
it is true, would account for these facts; the third in deducing from this 
hypothesis further consequences which can be tested by observation. So 
according to Russell, the act of observation is basic to science. Intuitively, the 
notion of observable is attached to that of a concrete procedure for deter
mining the value assumed by the observable of a system at a specific time. The 
crucial ingredient of any such procedure is a measuring instrument, which 
forms the basis both for our knowledge of the physical world and for our for
mulation of models that organize this knowledge and allow us to predict 
and control. 

Rosen (1978) provides a comprehensive theory of observables and the 
descriptions arising from them. The theory is then applicable to any situation 
in which objects of interest are labelled by definite mapping processes, 
measurement in physics, pattern recognition, discrimination, or classification. 
All these diverse situations share a common character, namely, the generation 
of numbers (or other kinds of invariants) that serve to label the processes with 
which they are associated, such that processes are considered "the same" if and 
only if they bear the same label. This leads to the idea of observable induced 
equivalence relations. 

It is suggested in Rosen (1978) that a formal treatment of systems with 
observables using category theory would be a fruitful undertaking. The 
engagement in this problem marked the beginning of my dissertation. The 
next idea immediately came to mind: Why stop at systems with observables? 
Since the process of observation ultimately rests on the capacity of a given 
system to induce a dynamics (i.e., a change of state) in a measuring instrument 
(alias meter, recognizer, discriminator, classifier, etc.), it seems natural to 
consider systems with dynamics as well. M y definition of dynamics is more 
general than that in Rosen. Roughly, the trajectories of my dynamics are 
not defined on the whole real line as in Rosen, but are only required to be 
defined on a (possibly bounded) neighbourhood {a, b) of zero, in which case 
the "observed value" of the dynamical interaction can simply be defined as 
the value at b, whereas in the former case one needs asymptotic values. 

There is a reciprocity that exists in general dynamical interactions between 
systems. The process of measurement can be considered as a reciprocal 
induction of dynamics in both the system being measured and the system that 
measures. Then the basic problem in the analysis becomes to determine the 
observables through which a particular given dynamics is taking place, to 
specify the subsystems to which these observables belong, and to identify the 
manner in which each of these subsystems is causing the others to change 
states. 
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I I . P R E L I M I N A R I E S : C A T E G O R Y T H E O R Y 

There is therefore only a single categorical imperative and it is this: Act only on 
that maxim through which you can at the same time will that it should become a 
universal law. 

Immanuel Kant 

7. General Discussion 

Many problems in mathematics are not primarily concerned with a single 
object such as a function, a group, or a measure, but deal instead with large 
classes of such objects. The classes consist of sets with a given structure and of 
the mappings preserving this structure. 

Thus we may be dealing with groups; the mappings preserving the group 
structure are the (group-) homomorphisms. When we turn to vector spaces, 
the appropriate mappings are the linear transformations. And when we study 
topological spaces, continuous functions arise naturally. 

The concepts of hnkage of observables, stability, and bifurcation, and their 
connections with dynamics are introduced in Rosen (1978). In my study I 
treated them in the context of the category of natural systems, an amalgama
tion of states, observables, and dynamics. Thus my formal treatment of natural 
systems was initiated by, but very different from, Rosen's book. Further, the 
categories I constructed have many curious links with diverse branches of 
mathematics from topology to Galois theory and provide a natural setting to 
discuss the modelling relation. 

During the course of this work, some questions suggest themselves 
naturally: the problems of growth, differentiation, development, and aging 
arose when I considered the evolution of natural systems through time. These 
problems converged to the concept of the organism, which led to the 
organismic sets of Nicolas Rashevsky (1972) and the living systems of James 
Miller (1978). At the time of writing this thesis, I was also collaborating with 
Professor I. W. Richardson on a paper (Richardson, Louie, and Swaminathan, 
1982) in which we developed a phenomenological calculus underlying his 
theory of the description space. I was pleasantly surprised to find a connection 
between the ideas of categorical system theory in my thesis and this 
phenomenological calculus. It is quite remarkable that the apparently 
completely different methods used by my two teachers, Professors Rosen and 
Richardson, to analyze complex natural systems are actually very close in 
essence through this connection woven into my thesis. 

From whatever side we approach our principle, we reach the same 
conclusion. 
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A useful discussion of this situation can be given within a general framework 
that assumes only very little about the mappings. All we need is that they are 
closed under composition and include the identity mapping. But we need not 
even assume them to be mappings. The definition takes the following form. 

2. Category 

DEFINITION . A category C consists of 

(1) a collection of objects. 
(2) For each pair of C-objects A, a set C{A, B), the hom-set of morphisms 

from ^ to B. If / G C(A, B), we also write f\A-^B. 

(3) For any three objects / I , J5, C a mapping 

C{A,B) X C ( ß , C ) - > C ( ^ C ) 

taking f\A^B and f̂: ^ C to its composite go f.A^C. 

These satisfy the following three axioms: 
(i) C{A, B) η C ( C , D) = 0 unless ^ = C and J5 = D. (Thus each mor-

phism f:A ^ ß determines uniquely its domam ^ = dom / and its codomain B. 
So the objects in a category C are really redundant and one can simply 
consider C as a collection of morphisms, or arrows.) 

(ii) Associativity: If f: A ^ B,g\ ΒC,h:C ^ DA^o that both ho{gof) 
and (hog) of are defined), then ho{g o f) = (ho g)o f, 

(iii) Identity: For each object A, there exists \/.A-^A such that for 
any f\A^B,g\C^A, one has / o 1̂  = / , 1̂  o ^ = g, (It is clear that 1̂  is 
unique.) 1̂  is called the identity morphism on A. 

3. Isomorphisms 

Speaking informally, two mathematical systems of the same nature are said 
to be isomorphic if there is a one-to-one mapping of one onto the other that 
preserves all relevant properties, or a "structure-preserving bijection." Such a 
mapping is an isomorphism and it usually coincides with the intuitively most 
natural concept of structural preservation. Categorically, we have the 

DEFINITION . A morphism f\A-^B is an isomorphism if there exists an 
inverse morphism g:B-^ A such that g o f = \^ and / o ^ = 1̂ . It is clear 
that if such inverse morphism exists it is unique and may be denoted by / ~ ^ 

An isomorphism with domain and codomain both A is an automorphism on 
A. If there exists an isomorphism from A to Β then A and Β are isomorphic, 
denoted by / I = B. Isomorphic objects are abstractly the same and most 
constructions of category theory are only unique "up to isomorphism." 
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4. Examples of Categories 

(1) The category Ens of sets and functions (i.e., the class of Ens-objects is 
the class of all sets). (In this study we shall take the naive viewpoint of set 
theory and assume the existence of a suitable universe of all sets—all small 
sets.) And for sets A and B, Ens(/1, B) = B^ is the set of all functions from A to 
B. Note that f.A-^Bandf.A^ B\ where f{A) a B, /(A) a B\ and Β Φ B\ 
are considered as different Ens-morphisms even though as mappings they are 
the same. It is understood that similar remarks apply to the other examples 
that follow. Also, Ens-isomorphisms are just bijections. 

(2) The category Gp of groups and homomorphisms. 
(3) The category Top of topological spaces and continuous functions. Top-

isomorphisms are homeomorphisms. 
(4) The category of nonempty sets and functions. 
(5) Let Μ be a monoid. We can regard Μ as a category with a single object, 

whose morphisms are the elements of M . Note the identity in the monoid is the 
identity morphism and composition of morphisms is the monoid operation. If 
all morphisms are isomorphisms, the monoid is a group, and conversely. 
(Indeed, if A is any object in a category C, the hom-set C{A,A) can be 
considered as a monoid.) 

(6) A partially ordered set (S, < ) may be considered as a category whose 
objects are the elements of 5, and S(a,h) for a,bE S has a single element or is 
empty according to whether a < b or not. 

From these examples we see that morphisms are generally, but not always, 
mappings. We shall, most of the time, illustrate the composition of morphisms 
by diagrams as for mappings. For example, the associativity condition of 
II.2(ii) is equivalent to saying that in 

the square commutes. 

5. Subcategory 

Given categories A and B, we say that A is a subcategory of Β if each A -
object is a B-object, each A-morphism is a B-morphism, and composition of 
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6. Functors 

The idea of a "structure-preserving mapping" can be extended to categories 
themselves. Let A and Β be categories; then a (covariant) functor from A to Β 
is a function F: A Β that assigns to each A-object X a B-object FX and to 
each A-morphism / : X -> 7 a B-morphism Ff.FX-^FY such that 

(i) If ^ o / is defined in A , then FgoFf is defined in Β and F{go f) = 
Fg o Ff 

(ii) For each A-object Χ,ΡΙχ = \ρχ. 

Besides the covariant functors there is another kind of functor, which 
reverses the composition. A contravariant functor F from A to Β assigns 
to each A-object X a B-object FX and to each A-morphism fX-^Y a 
B-morphism Ff.FY ^ FX such that (ii) above holds and 

(i*) If ^o / is defined in A , then Ff o Fg is defined in Β and F{go f) = 
Ff o Fg. 

7. Dual Category 

Associated with each category C there is another category called its dual or 
opposite, denoted by C ^ , formed by "reversing all the arrows." Explicitly, 
has the same objects as C, but to each C-morphism fX^Y there 
corresponds a C^^-morphism / ^ ' P ; Y^X,SO that / ° P O is defined when
ever ^ o / is defined, and that (g o / ) « P = / ° P O ^«P. 

Note that a contravariant functor from A to Β may be described as a 
covariant functor from A' '^ to B , or as a covariant functor from A to B°P . Also, 
( A « P ) ° P = A. 

morphisms is the same in A and B . Thus for any two A-objects X and 7, we 
have 

\{X, Y) cz B(X, Y), 

If equaUty holds for all X and 7, A is a full subcategory of B . 
The category of sets and injections is a subcategory of Ens that is not full, 

while the category of nonempty sets and functions is a full subcategory of Ens. 
The category Gp is a full subcategory of the category Mon of monoids and 
monoid-homomorphisms—every monoid-homomorphism between groups 
is actually a group-homomorphism; and the category Ab of abelian groups is a 
full subcategory of Gp. 

Note that for a general subcategory we must specify both objects and 
morphisms and for a full subcategory we need only specify the objects. 
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f°g = h^fig) h^f(g) = g°f 

X 
f 

and are known as the covariant hom-functor and the contravariant hom-
functor, respectively. 

(5) The homology functors H„ from Top to Ab that take a topological space 
X to its singular homology groups H„{X), and a continuous function f.X Y 
to the homomorphisms f^:HJ,X) H„(Y) are covariant functors. Similarly, 
the cohomology functors H": Top Ab are contravariant functors. In fact, it is 
in the study of algebraic topology that the ideas of category theory originated 
(see Eilenberg and Mac Lane, 1945). It is interesting to note that category 
theory arises from the area of mathematics that gives an example of the power 
of the modelling relation. (In algebraic topology the topological spaces can be 
considered as being "modeled" by various algebraic objects. For a discussion 
of the modelling relation, see Section VI . ) 

THEOREM . Let F: A Β be a (covariant or contravariant) functor. Then F 
maps A-isomorphisms to B-isomorphisms. • 

8. Examples of Functors 

(1) There is a covariant functor from Gp (or Top, or any category of "sets 
with structure" in general) to Ens which assigns to each group (or topological 
space) its underlying set, and regards each homomorphism (or continuous 
function) as a mapping of sets. This functor is called the forgetful functor. 

(2) If A is a subcategory of B, then the inclusion of A in Β is a functor, the 
inclusion functor. 

(3) Let Μ and Ν be monoids, regarded as categories [see Example 11.4(5)]. 
A covariant functor from Μ to Ν is simply a monoid-homomorphism. 

(4) For any category C and C-object A, there is a covariant functor /i^ 
[and a contravariant functor / i ^ ] from C to Ens that assigns to a C-object 
X the set h^'X = C{A, X) [and h^X = C(X, A ) ] and to a C-morphism fX^ 
Y the function / i ^ / : C{A, X) ^ C(A, Y) [and hj: C (y , A) ^ C ( X , / ! ) ] defined 
by 

h^f{g) = f^g for g:A^X 

landhJ(g) = gof for g:Y^Al 

i.e., via the diagrams 

T>r /" \7 
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Applied to algebraic topology, for example, this theorem says that if H„{X) 
and H„{Y) are not isomorphic groups, then the topological spaces X and Y are 
not homeomorphic. This is why algebraic topology is used as a tool in dealing 
with the "homeomorphism problem." 

P. The Category Cat 

The idea of category can be applied to categories and functors themselves. 
Functors can be composed—given functors F: A Β and G: Β -> C the maps 
X i -> G{FX) and / G{Ff) on A-objects X and A-morphisms / define a 
functor G o F: A -> C. This composition is clearly associative. For each 
category A there is an identity functor / ^ : A A. So we may consider the 
category Cat having as objects all small categories and as morphisms all 
functors between them. The reason we have to consider small categories and 
not any category in general is that we want the Cat-objects to be in the universe 
of set theory (see Example 11.4(1)) and hence we want the collection of objects 
of a Cat-object to be a small set. 

An isomorphism F: A Β of categories is a functor that is a bijection both 
on objects and on morphisms. This is clearly equivalent to the existence of an 
"inverse functor" F"^: Β ^ A. 

10. Full and Faithful Functors 

A functor F: A Β is full if to each pair X, Y of A-objects and to every B-
morphism g:FX FY there is an A-morphism f.X 7such that g = Ff. 

A functor F: A -> Β is faithful if to each pair X, Y of A-objects and to every 
pair / i , /2: X -> y of A-morphisms the equality F/j = F/2: FX -> F 7 implies 

/ l = / 2 . 
For example, if F: Μ iV is a surjective but not injective monoid 

homomorphism, then when Μ and Ν are regarded as categories [Exam
ple 11.4(5)], F can be considered as a functor and it is full but not faithful. 
On the other hand, the forgetful functor from Gp to Ens is faithful but not 
full. 

These two properties may be visualized in terms of hom-sets. For each pair 
of A-objects X and Y, the functor F: A Β assigns to each / e A{X, Y) a 
morphism Ff e B(FX, FY), and so defines a function 

F^y.AiX, Y)-^B{FX,FY) 

with FxY(f) = Ff. Then F is full when every such function is surjective and 
faithful when every such function is injective. If F is both full and faithful, then 
every such function is a bijection, but this does not mean that F is a Cat 
isomorphism, for there may be B-objects that are not in the image of F. 
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Gx ^ c y 
Gf 

We use the notation oc:F -^G when α is a natural transformation from F to G. 

12. Functor Category 

If A and Β are categories, we can define the functor category B^ to have as 
objects all (covariant) functors from A to B, to have as morphisms natural 
transformations, and to have as composition and identities the "pointwise" 
ones. It is easy to check that B^ is indeed a category. 

Isomorphisms in B^ are called natural equivalences. The natural trans
formation a: F -> G is a natural equivalence if and only if each aX (for A -
objects X) is an isomorphism (from FX to GX) in B. 

13. Products 

In set theory, the product of a family { / I , : i e / } of sets is the set ^ = Π Ai of 
all /-tuples (a,: i e I) with each a, e Ai. The function ny.A^ Aj that sends (a,) 
to ttj is called the jth projection (or projection onto the;th coordinate). If Ä is a 
set and if there are functions fy.A' Aj, then there exists a unique function 
fA'^A such that π - / = /,· for all j e I; namely, fia') = (fia'): i ε I). 

If A is a subcategory of B, then the inclusion functor is faithful. It is full if 
and only if A is a full subcategory of Β. 

As another example, consider Rosen's (1958) representation theorem of 
biological systems: "Given any system Μ and a resolution of Μ into 
components, it is possible to find an abstract block diagram which represents 
Μ and which consists of a collection of suitable objects and mappings from 
the category of all sets," i.e., there is a faithful functor from the "category of all 
systems" to Ens. 

11. Natural Transformation 

DEFINITION . Suppose F, G: A Β are two functors between the same two 
categories. A natural transformation α from F to G is defined by 

(1) for each A-object X there is a B-morphism ocX: FX GX, 
(2) for each A-morphism / : X 7 the following square of B-morphisms 

commutes: 
Ff 
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A category C has products if Π Αι exists for every family {A^: i G / } . 

LEMMA . Any two products of { A , : i G / } are isomorphic. • 

This lemma holds for all universal properties, i.e., any constructions in a 
category via universal properties are unique up to isomorphism. 

DEFINITION . The product of the empty family in C is the final object of C , 
X is the final object of C if and only if for every C-object A there is a unique 
C-morphism from A to X. 

EXAMPLES . Ens has products, the usual "cartesian product sets." The final 
object in Ens is a singleton set. Top has products, the cartesian product sets 
with the product topologies. The final object is a singleton set with the only 
topology. Gp has products, the direct products of groups. The final object is 
the trivial group. 

14. Duality 

For each concept in a category C , there is a co-concept from its dual category 
C°P. For example, if f:A^ Bisa C-morphism, then A is the domain of / in C ; 
now p^:B-^A in C^P is such that Β is the domain of / ^ P , hence Β is the 
codomain of / in C . This is consistent with Definition n.2(i). 

If I ( C ) is a statement about an arbitrary category C , let Σ^Ρ be the state
ment defined by Σ''^{€) = Z ( C ° P ) . For example, consider the statement in 
Lemma 11.13: 

Z ( C ) = Products in a category C are unique up to isomorphism. 

Then 

Σ ( ^ Ρ ) = Products in a category are unique up to isomorphism. 

With the preceding motivation, given a family of objects {Ai'.ie 1} in a 
category C, a product of this family in C is an object A of C, often denoted by 
UAi, with an /-tuple of C-morphisms (projections) Ui'.A-^Ai, possessing 
the universal property that whenever A' is a C-object similarly equipped with 
fi'.A' Ai, there exists a unique C-morphism f:A'-^A such that for all i e /, 
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A category C has coproducts if U Ai exists for every family { / I , : / e I}. 
The coproduct of the empty family is the initial object of C. X is the 

initial object of C if and only if for every C-object A there is a unique 
C-morphism from X to A. 

EXAMPLES. Ens has coproducts, the disjoint union U Ai = U{i} χ Ai = 
{{i,a):ie Ι,αΕ Ai} and the 7th injection ij sending asAj to (7,a). The 
unique initial object of Ens is the empty set 0 . (By the Bourbaki convention, 
X^ = {0} for any set X; i.e., there is a unique function from the empty set to 
any set, namely, the inclusion map of the empty set into X—the "empty 
function.") 

Top has coproducts, the disjoint union equipped with the direct sum 
topology—a set G in U A, is open if and only if G η Ai is open for each i. 
The initial object is the empty space. 

The coproduct in categories of sets with structure may have its underlying 
set different from the disjoint union. For example, in Ab, the coproduct U Ai is 
the subgroup of Π A, consisting of all /-tuples (a,) such that a, = e¿ = the 
identity of Ai for all but finitely many /. U Ai is usually referred to as the 

Hence we have the Lemma ILIS^ 'P; 

Σ « ρ ( 0 = l í C ' P ) = Coproducts in a category C are unique up to isomorphism. 

(Note that co-isomorphisms are isomorphisms.) 
The Principle of Categorical Duality is: Σ^'Ρ is universally true if Σ is. (Note 

that "universally true" means that the statement is a consequence of the 
category axioms.) Duality cuts the work in half. 

75. Coproducts 

A C-object A with C-morphisms ifAj .4 is the coproduct of the family 
{Ai: i G / } in C if, of course, {A, if\ A A^) is the product of {A^ :iel} in C^P. 
Explicitly, {A, ij) is the coproduct of {>!,·} in C if for {A\g/. Aj A') there exists 
a unique C-morphism g:A^A' such that for all j Ε I, goi. = g.. The 
morphisms ij are called injections and the coproduct of {A^} is denoted by 

Diagrammatically, we have: 
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I I I . T H E C A T E G O R Y OF F O R M A L S Y S T E M S 

To banish reality is to sink deeper into the real; allegiance to the void implies denial of its 
voidness. 

Seng-Ts'an 

A . Introduction 

1. General Discussion 

Throughout this study we will be dealing with three basic undefined terms: 
system, state, and observable. Intuitively, a system is some part of the real world 
that is our object of study; a state is a specification of what our system is like at 
a particular time; and an observable of the system is some characteristic of the 
system that can, at least in principle, be measured. In other words, an 
observable of a system is a quantity that can induce dynamics in some 
appropriate meter. 

These three basic concepts are interrelated via two fundamental prop
ositions that we shall take as axioms in all of what follows. These 
propositions are as follows: 

PROPOSITION 1. The only meaningful physical events that occur in the 
world are those represented by the evaluation of observables on states. 

PROPOSITION 2. Every observable can be regarded as a mapping from 
states to real numbers. 

Scientific activity usually starts with the collection of observable phenom
ena within a given field. The significance of Proposition 1 lies in the word 
meaningful—because our information on a system is derived from what we 
can observe; hence what we cannot observe (in the generalized sense of 

direct sum 0A¿ . And for the universal property, g'AlAi A' is defined by 
giiäi'.i e I)) = Σgi{ai). Note that a¿ = ^, hence = e' = the identity of 
A' for all but finitely many i, so there is no "convergence" problem in the 
sum. The initial object of Ab is the trivial group that is also the final object. 
In a category C, an object that is both initial and final is called the zero 
object. 

This ends the preliminaries on the fundamentals of category theory, which is 
put here for the notation and for completeness. Many other constructions are 
possible in a category, and they will be introduced and defined when 
encountered. The reader is referred to any standard text on category theory 
(e.g., Mac Lane, 1971) for more detailed discussions. 
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2. Equivalence Relations 

Let us consider the prototype situation, in which we have a set S of states 
and a real-valued function / : S -> R that represents an observable. / induces 
an equivalence relation Rf on S defined by 

S,RFS2 iff f{s,)=f{S2). 

Clearly, the quotient set S/Rf is in one-to-one correspondence with the 
spectrum f(S). In general the observable / conveys limited information about 
its domain S, because by definition it cannot distinguish between states lying in 
the same equivalence class, and the set of states of our system would appear to 
be S/Rf. This is why "alternate descriptions" of a system are important: The 
more observables we have, the more information we have on S. 

creating percepts in our brains) will not be meaningful to us. This points also to 
the fact that as our means of observation increase, the more "alternate 
descriptions" we have on a system, we will have more insights in how and why 
things work. 

T o see why Proposition 2 makes sense, let us first quote Sir Arthur 
Eddington from his Fundamental Theory (1949): "The whole subject matter of 
exact science consists of pointer readings and similar indications; whatever 
quantity we say we are Observing', the actual procedure nearly always ends in 
reading the position of some kind of indicator on a graduated scale or its 
equivalent." In science the most common form of questioning Nature is 
through experiments, and the answer often comes in numerical readings. 

It may well be that from the point of view of scientific enquiry, the only way 
we can handle any entity is through the numbers associated with its 
measurement, which in turn is defined through the measuring instrument, the 
meter. This, in particular, is the view of Einstein's on time. Such a definition of 
time—as something dependent of a measuring instrument—is called an 
operational definition. Borrowing the terminology, our two propositions are 
then saying that all our observables are operationally defined, and all our 
meters are real-valued. 

It must be realized, however, that the operational definition of scientific 
entities will enable us to investigate only certain aspects of science. Other 
questions are in principle unanswerable (i.e., they will not yield a measurement 
that gives an answer to the question). Such questions are then meaningless in 
the context of scientific investigation. But the study of those aspects amenable 
to science based on operational definitions is enough to keep us busy forever. 
After all, the study of a model of the whole of Nature belongs to metaphysics, 
not science. 
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B. The Category S 

W e shall now undertake a formal treatment of systems, considered as 
abstract mathematical objects. W e shall be studying the properties of the 
category S of (formal) systems and comparing them to those of the category 
Ens of sets. 

3. Objects 

An object of S, a formal system, shall consist of a pair (S, F ) , where 5 is a set 
and F is a set of real-valued functions on S. The elements of S are the states 
and the elements of F are the observables of the formal system. W e shall 
always assume 0 e F (where 0 is the zero function on S sending all states to the 
number 0) although for brevity we may sometimes omit 0 when we list the 
elements of F in specific examples. Thus we have F nonempty in order to 
avoid "empty set pathologies." The observable 0 is simply "identifying the 
states in 5." Note that (0)^ is the greatest element in the partially ordered 
set ( R 7 - , < ) . 

On the other hand, the equivalence relations on S induce an equivalence -
on IR^ the set of all real-valued functions on 5, as follows. For f,g e U^, define 
f ^ g \{ and only if Rf = Rg, i.e., if and only if / ( s j ) = / ( S 2 ) is equivalent to 
Qi^i) = di^i)' T w o equivalent observables "convey the same information" 
about the elements of S; therefore we cannot distinguish between elements of S 
by employing equivalent observables. Note, however, that f ^ g only means 
that S/Rf = S/Rg, i.e., there is a one-to-one correspondence between f(S) and 
g{S), and there need be no relation whatsoever between the values of f{s) and 
g{s) for seSAn particular, |/(si) - f(s2)\ small does not imply \g{s^) - g{s2)\ 

small. Thus if we are considering the metric aspects of observables (which we 
shall do in later sections), we cannot pass to the equivalence classes in R ^ / ^ . 
But when we are only interested in the reduced states in S/Rf and not the 
specific values of / ( 5 ) , it is more convenient to consider observables as 
elements of U^/^. One reason for this is that [ R ^ ^ is a partially ordered set 
under the relation refinement. [Define / refines g, f < g, if f{si) = fisi) 
implies g{s^) = g(s2), i.e., if Rf a Rg, for f,ge U^. Then it is clear that < is 
reflexive and transitive on and hence is a preorder. But f < g and g < f 
only implies Rf = Rg (i.e., f ^ g) and not / = g.So to make < antisymmetric, 
one passes onto U^l ̂ . Note that f < g and g < f if and only if / ^ g.^ It is 
not uncommon in mathematics to consider equivalence classes of functions 
instead of the functions themselves—the spaces, for example, are 
equivalence classes of functions with f ^ g if and only if f = g almost 
everywhere. 
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6. Composition 

Define composition of morphisms in S as simultaneously the compositions 
on the states and on the observables; i.e., if 0: (5^, F j ) (52, F2) and (/̂ : (^2, F2) 
(S3 ,F3), define φ o φ:{8,,Ρ,)^{8,,Ρ,) by for every seS.ij/o φ{3) = φ{φ{s)) 
and for every f e F^ φ o φ{/) = φ{φ/). Note for / G F^ and 5, s' e S^, sRfS' 
implies {φs)Rφf{φs'), which in turn implies φ{φs)R^^^φf)φ{φs')\ ^οφ o φ satisfies 
the compatibility condition. 

Clearly, composition so defined is associative, and for φ: (5 i , F j ) (^2, F2), 
^ ( S 2 , F 2 ) ο φ = φ = φ ο l^SuFx)' 

7. Isomorphisms 

If 0 : ( S i , F i ) ^ ( 5 2 , F 2 ) and iA:(S2,F2)-> ( 5 i , F i ) are such that φοφ = 
l ( S I , F , ) and φ o φ = 1 ( S 2 . F 2 ) ' then it is easy to see that φ:8ι - > 2̂ and φ'.Ρ^ 
F2 must be bijections (Ens-isomorphisms) and that for / G F^ and s, s' G 5^, 
f{s) = f{s') if and only if {φf){φs) = {φf)(φs^ i.e., for every G^F, SJ 

RG = ^2/RφG' 
Thus isomorphic systems are abstractly the same in the sense that there is a 

"dictionary" (one-to-one correspondence) between the states and between the 
observables inducing the "same" equivalence relations on the states. In 
particular, if F and G are two sets of observables on S and there is a bijection 
φ:F-^G such that for all / G F / - </>/, then the two systems (5, F ) and (5, G ) 

4. Morphisms 

An S-morphism φ eS{{S^,F^\ i'^i.Fi)) is a pair of functions 0 6 
Ens(5i Í -^i) äi^d ^ Ens(Fi, F2), such that for all f eF^ for all s,s' e S^^f (s) = 
fis') implies {φf){φs) = {φf){φs'l i.e., sRjs' implies {φs)RφJ·{φs'). 

Note that this "compatibility" condition is equivalent to saying for all 
G c= Fl for all s, s' e S j , si^^s' implies {φs)RφG(φs'), where = ^^f- f^^ 
(hence s/^^s' if and only if for all / e G f{s) = f{s')) sind φΟ = {φ/: f e G} ^ 
F2. This means that for all G c= F^, (/) can be considered as a mapping from 

SJRo to S2/RφG· 
We always define 00 = 0. This is compatible because clearly Os = Os' 

implies 0{φs) = 0(φs'), Note also that for any observable / , the assignment 
φ/ = 0 is acceptable. 

5. Identity 

Define l^s,^) G S ( S , F ) , (5 , F ) ) by for all s G S s s and for all / G F / H - ^ / . 
(Thus for all G c: F, Gi—•G.) Then clearly \^s,f) satisfies the compatibility 
condition. 
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C. Constructions in S 

8, Products 

Products in the category S do not always exist. For a family { (5 , , Fj): Í G / } , 
the product should be (5, F ) = n(Sy, F)) :j e I with an /-tuple of S-morphisms 
of the form π , : (5,F) (S,, / \ ) . 5 is defined as the cartesian product Π S, of the 
sets of states. F is defined as the "cartesian product" YlFj of the sets of 
observables interpreted as follows: for the observable (fj: j e I) in F, it is a 
mapping from S to IR' defined by 

(fj:jel){sj:jel) = (fj{sj):jel). 

But S-objects can only have real-valued observables so the mapping / = 
(fj-. j e I):S ^ U ' must be represented by an equivalent mapping from S to 
IR (such that S/Rf remains the same). In other words, we need a one-to-one 
map from (IR^)^ to that preserves the equivalence relations on S induced by 
the observables, or what is equivalent, an injection from to R. An injection 
from to IR only exists when the cardinality of / is less than that of IR; thus S 
only has countable (including finite) products. Note, however, that the S-
product is independent of the choice of the injection from W to U because the 
effect of changing the injection is simply a switch from F to an —-equivalent 
set G, and (S, F ) and (S, G) are isomorphic (see Section III.7). Different choices 
of the injection define different S-isomorphism class representatives of the 
product. 

The projections are obviously defined by πι((sy:y G / ) ) = s, and π,((/^: 
j G / ) ) = fi. And it is easily checked that the π,'s are indeed S-morphisms. 

T o see that (5, F) is a product, consider an S-object (X, H) equipped with an 
/-tuple of S-morphisms π ^ : ( X , / / ) ^ ( 5 , , F ¿ ) . Then 

( 5 , F ) ! 2 _ H . ( 5 , , F , ) 

3 . ' X ^ /φ i 

{ΧΜ) 

are isomorphic with the S-isomorphism l^: S ^ 8,φ:Ρ ^ G. Since categorical 
constructions are only unique up to isomorphism, in the category S all 
constructions (S,F) are only "unique up to --equivalent observables" (i.e., 
one can always replace F by an — -equivalent set of observables G in the above 
sense) even when the set of states S is held fixed. This last comment is 
particularly important for all constructions in S below. 
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9. An Application: Linkage 

DEFINITION . Let S be a set of states and f.geU^ be observables. Let p/. 
S^S/Rf and Pg'.S^S/Rg be the natural quotient maps. For {s)feS/Rf 
consider the set of K^-classes which intersect {s)f, i.e., the set 

P,Pj'is)f = {(sVfis') = f(s)} = { ( 5 ' ) , : ( s ' ) , n ( s ) , Φ 0 } . 

Then we say 

(1) is totally linked to / at (s)y if the preceding set consists of a single Rg-
class (necessarily (s)^; i.e., f{s) = f(s') implies g{s) = g(s')); 

(2) g is partially linked to / at (s)f if this set consists of more than one Rg-
class, but is not all of S/Rgi 

(3) g is unlinked to / at (s)y if this set is S/Rg. 

Also, we say g is totally linked to / if it is totally linked at each (s)y and g is 
unlinked to / if it is unlinked at each {s)f. 

From the preceding definition it is immediate that g is totally linked to / if 
and only if Rf refines Rg, which is equivalent to the existence of an S-
morphism from (S, { / } ) to {S,{g}) which sends each s G 5 to itself and sends 
/ to of, for the latter statement means precisely that f{s) = f(s') implies 
g{s) = gis'l 

For a set of states 5 equipped with two distinct observables / and g, there is 
another equivalence relation on S other than Rf and Rg that is of interest— 
namely, the intersection Rfg - RfnRg. The relation Rfg is defined by sRfgS' if 
and only if f{s) = f{s') and g{s) = g(s'). Note that there may not be an 
observable of S that generates the equivalence relation Rfg, i.e., although 

We can define φ: {X, Η) - (S, F) by for χ e X φ{χ) = {φJ{x): j e / ) , and for 
he Η φ{Η) = {φj{h): j e / ) , where again φ{Η) is to be represented by a map
ping from S to IR via the injection from W to U. It is clear that φ is the unique 
map that makes the diagram commute. [But φ is of course dependent on the 
choice of the injection from W to IR that determines the product (5, F ) . ] T o see 
that φ is an S-morphism, leihe Η and χ,χ' e X be such that h{x) = h{x'). Then 
for each i e I {φιΗ){φιχ) = (φιΗ}{φιχ') because each 0, is an S-morphism. 
Whence by definition (φΗ)(φχ) = (φΚ){φχ'). Thus xR^x' implies (φx)Rφh(φx'). 
So (S ,F) with the π,'s satisfy the universal property in the definition of a 
categorical product. 

The final object in S is ( 1 , ( 0 } ) where 1 is the singleton set, the final Ens-
object. The unique S-morphism from any system to (1, { 0 } ) is clearly the one 
that sends all states to 1 and all observables to 0. 
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mathematically there exists heU^ such that Rfg = R^,, the set of all possible 
observables of 5, as a representation of a natural system, may not be all of IR .̂ 
Thus Rfg is generally a formal construction. 

There is always an embedding φ'.S/RfgS/Rf χ S/Rg that maps 
{s)fg {{s)f,(s)g). Via this embedding, a state 5 e 5 is represented by the pair of 
numbers (f(s\ g{s)). This embedding φ is in general one to one, but it is onto if 
and only if / and g are totally unlinked (to each other). 

This product representation can be constructed neatly as a categorical 
product. Consider the two systems (S, { / , 0 } ) and {S,{g,0}), The S-product of 
these two systems is {S χ 5, F ) , where F = {0 , ( / , 0), (0, g), (/, g)} c (R^ ^ ̂ , with 
the natural projections. N o w consider further the system (5, { / , g}). There exist 
S-morphisms 

0 i : ( 5 , { / , ^ } ) - ( 5 , { / , O } ) 

and 0 2 : ( S , { / , ^ } ) - > ( S , { ^ , O } ) 

defined by for every se S 

0 i ( 5 ) = s; 

and 0 2 ( 5 ) = 

So we have the following diagram: 

Φιί = o, Φ2g = g. 

(SxS.F) 

{SAf.g}) 

Henee by the universal property of the product, there exists a unique 
Φ'{^Α/^θ})-^{^ X that makes the diagram commute. Namely, φ is de
fined by sending s G 5 to 0(s) = (s,s)—the diagonal map—and by φ/ = ( / , 0 ) , 
Φο = Φ^θ)· In particular, φ being an S-morphism implies that φ:S/R{f^g} 
S X 5/i?{(yo).(o,g)}- It is clear that 0 is a one-to-one mapping (on S) and that 
^iU) = ^F9 hence S/R^^g^ = S/R^g. Also, S χ 5//?u/,o),(o,.)} = S/R^ χ S/Rg. 
Thus φ is indeed the one-to-one map from S/Rfg to S/Rf χ S/Rg, and that 
the degree of onto-ness of φ is an indication of the lack of linkage between 
/ and g. The onto-ness of a morphism is discussed in Section I I I . 14. 
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(An equivalent way of defining an equalizer is to say that it is a final object in 
the category of all C-morphisms that satisfy / o i = g o i) As usual for 
"universal property" definitions, equalizers are unique up to isomorphism and 
will be denoted by Qq{f,g). A category C has equalizers if e q ( / , ^ ) exists for 
every pair f,g\A~^B. 

For S-morphisms φ, i/^:(5i,Fi) -•(52,F2), Qq{φ,φ) = (Ε,Η) may not exist. 
The equalizer would have to be given by Ε = {se Sy:φs = φs}, Η = 
{/\Ε''/^Ρ^,Φ/ = Φ/} and i : ( F , / / ) ( 5 i , F i ) would be the inclusion mor
phism. But Ι{/\Ε) = f may not be uniquely defined because there may be 
another g e such that g\E = /\Ε and φg = φg. Thus an S-equalizer only 
exists when the inclusion from Η to F^ is a single-valued function. 

Note when (F, H) = eq((/>, φ) does exist, i: (F, H) (S^, F j ) has the property 
that for all s,s' e Ε and for all g e H, g(s) = g{s') if and only if {ig){s) = {ig){sX 
i.e., E/Rg ^ i{E)IR,g. Further, any S-morphism z:(A^i,Gi)-^(X2,<^2) that is 
one-to-one on the states and observables and that has this property (that 
Xi IRg ^ χ(Χι )IR^g for all g G Gj) is an equalizer. It is easy to construct a pair of 
S-morphisms φ^, Φ2 with domain (X2»^2) such that (Χ^,Ο^) = eq(0i,02). 
Thus although S does not have equalizers for every pair of S-morphisms, given 
an S-morphism φ with the correct properties one can always find a pair of S-
morphisms for which φ is the equalizer. 

Equalizers will be discussed further in the sections on hierarchies of S-
morphisms. 

70. Equalizers 

Let A and Β be sets and f,g:A-^BbQ two functions. The inclusion map / of 
the subset Ε = {x e A:f{x) = g(x)} of A can be characterized up to isomor
phism by the following universal property: for every function /': E' A such 
that f oi' = goi\ there exists a unique function j\E' Ε such that i^j = i' 
(since the image of Ϊ is contained in £ , ; is defined by j{x) = i'{x) for χ G E'\ 

GeneraHzing this idea, given morphisms f,g\A-^B'mdi category C, an 
equalizer of {f,g) is an object Ε with a morphism i:E^ A satisfying the 
following universal property: 

(1) f oi = go /; 
(2) given Γ with f o i' = g o i\ there exists unique j such that i ^ j = i\ 

f , 

Ε ' ζ Β 
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( 5 , , F , ) tL^{S,F) 

The natural definition for φ (given {{Χ,Η\φι)) is φ{ί,8) = φi{s), ( />(/ , / ) = 0 , / . 
N o w suppose {Uf)GF, ( ; , s ) , ( /c , i )eS are such that ( i , / ) ( ; , s ) = ( i , / ) ( fe , i ) . 
Then either i = j = k and f{s) = f{t) or {j,s) = {k, t). If the former, then since 
φi is an S-morphism, {φif)(ΦiS) = {φif){φit), i.e., by definition {φ{i,f)) 
((/)(; , s)) = {φ(i,f)){φ(k,t)). If the latter, then j = k and s = t whence 0^5 = 

implying (<^,/)((/),.s) = ( 0 , / ) ( ( ^ / ) , hence ((/>(/,/))((/> ( 7 , 5 ) ) = (0(/,/))((/>(/c,i)). 
Thus φ is an S-morphism. 

S, therefore, has an initial object. The initial object in Ens is the empty set 0 , 
thence the initial object in S is ( 0 , { 0 } ) . For any system (S ,F) , the unique S-
morphism from ( 0 , { 0 } ) to (5, F ) is clearly the empty function on 0 with 
0 0 6 F. 

12. Coequalizers 

q:B-^Q in a category C is a coequalizer of f, g:A Β if, of course, 
q^P = e q ( / ^ P , ^ ° P ) in the dual category C°P. 

Ens has coequalizers. Given f, g: A B l e i RbQ the equivalence relation on 
Β generated by A' = {(f(ä),g{ä)):ae A}, i.e., let R be the intersection of all 

11. Coproducts 

S has coproducts only when a cardinality condition is satisfied. The 
coproduct is (5 ,F ) = IJ(S, , f )) where 5 = I I is the coproduct of the 5,'s in 
Ens (i.e., the disjoint union 5 = χ 5.) and F = { 0 } u { ( / , / ) : / e / , / e f;-, 
/ 7̂  0} defined as follows. For / e F^, f 7̂  0, the observable ( / , / ) of S is de
fined by 

where (*) denotes that we assume there is a one-to-one mapping from LI 5}: 
j Φ i to IR, i.e., we assume the existence of an observable = on I I Sj: j φ i. 
This assumption is only valid when the cardinality of S is no bigger than that 
of [R. Thus S-coproducts only exist when this holds. The natural injections 
are IÍ:(SÍ,FÍ) -> (5 ,F ) with i,(s) = {i,SI ij = (i,f) for S e Si and f e Fi with 
/ # 0, and Φ) = 0. 

T o check the universal property, consider the following: 
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And suppose q'.B^Q' and q'o f = q'o g; then R' = {{bi,b2):q'{bi) = 
q'{b2)} is an equivalence relation on Β containing A' and hence contains R; 
ρ is thus defined by pib)^ = q'{b) and so ρ o q = q\ 

The category S also has coequalizers, constructed as follows. Let φ, 
( /^: (5 i ,Fi ) -> (52,F2). Let β = S2/K where R is the intersection of all 
equivalence relations on S2 containing {(0(s) , {¡/(s)) e S2 x S2:5 e 5 i } and of all 
Rp^. So in particular for i, t' e S2, tRt' implies for all ^ G F2 g{t) = g{t'). Let 
Z*^2 β be the canonical projection χ[ί) = (t)^. This takes care of the map 
on the states. As for the observables, let R on F2 be the intersection of all equiv
alence relations containing {(φ/,φ/) e F2 x F2:f s F^}, and let x:F2^ 
Η = F2/R be, naturally, xg = (g)^, where (g)i^ e is to be interpreted as 
follows. Let {g)R:S2 IR be such that /?(^)^ is the equivalence relation on 2̂ 
generated by {Rg^:g' e (of)/?}, i.e., R^g)^ is the finest equivalence relation on 2̂ 
such that it is refined by each of the Rg',g' e {g)j^. Putting it another way, R^^g^R 
is defined to be the supremum of the family {Rg>: g' G (g)j^} in the lattice of all 
equivalence relations on ^2. It is clear, then, that R^g^^^ is refined by R on 2̂ and 
hence (g)^ is well defined on Q = S2/R, so we can consider {g)^: Q IR. Finally, 
to check χ:(S2,F2) (β ,Η) such defined is indeed an S-morphism, let g e F2 
and Í , Í ' G S 2 ; then g{t) = g{t') implies ( ^ ) R ( Í ) = (öf)/?(i') hence {g)R{t)R = 

{θ)κ(Οκ' So tRgt' does imply xit)R^gXit'). And clearly χοφ = χοφ. 
N o w if χ':(^2, F2) -> ( β ' , Η') is such that χ' o φ = χ' οφ^ then {( ί , t') e S2 x 

^2X'i^) = X'(tl} is an equivalence relation on 2̂ containing R. Thus 
n{t)R = x\t) is well defined on β = S2/R> Similarly, n(g)R = x'g is well defined 
on H. Clearly, χ' = π o χ and π is unique. 

φ 
(S..F.) ; 

Φ 

equivalence relations on Β containing A'. Let Q = B/R with canonical 
projection q:B ^Q. Then q = coeq( f,g). Clearly, q o f = q o g. 
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D. Hierarchy of S-Morphisms 

13. Monomorphisms 

Injective is an important property of functions. In particular it is the tool 
with which one defines subsets and the ordering of cardinals. As it turns out, 
there are many categorical definitions that characterize injective in Ens; we will 
content ourselves with three of them. 

Let / : ^ β in a category C. The morphism / is split mono if there exists a 
g:B-^Amthgof = l^,and equalizer if f = eq(ö'i,^2) for some pair 0̂ 1,0̂ 2· 
B^C, and mono if for all pairs gi,g2:X ^ A such that / = /^ö^i^ we 
have of 1 = 0̂ 2-

It is a general theorem in category theory (the "hierarchy theorem for 
monomorphisms;" see Manes, 1976) that split monos are equalizers and 
equalizers are monos. Also, if / and g are mono or split mono, so is ° / (when 
composition is appropriate); if g ° f is mono or split mono, so is / . (The 
analogue for equalizers is not always true; it is true, however, when a category 
has epi-equalizer factorizations. See Section I I I . 16.) 

In Ens, monos are the same as injective functions, and it is easy to see that all 
monos are equalizers. If f:A-^ Bis mono and A is nonempty, then / is split 
mono (let g = on f{A) and arbitrary elsewhere). Note, however, that the 
inclusion map of the empty set into a nonempty set is mono, but never split 
mono (because = { 0 } for sets ß but 0 ^ = 0 for Β / 0 ) . An Ens-mono / 
from A to Β will be denoted f\A>-^ B. This notation will sometimes be 
borrowed for a monomorphism in any category. 

Finally, we have to check that π is an S-morphism, Note that for every 
g'e{g)R (i.e., g'Rgl x'g' = x'g because {{g,g')eF2 x F2:x'g = x'g'} is an 
equivalence relation on F2 and since for every / 6 Fj χ\φ/) = χ'{φ/\ 
this equivalence relation contains all (φ/,φ/) and hence contains R. Also 
since x' is an S-morphism, for each g' e {g)^ we have g'{t) = g^t') implying 
ix'gWt) = ( r g W \ i.e., {X'g)(x't) = {x'g)(xn Thus R^^ is "refined" by 
each of Rg (on F2). Since R^^g^^ is the supremum of {Rg'^g' e(öf)/j}, we have 
^I9)R ^ Therefore ( ^ ) k ( O r = {ϋ)κ{Οκ in Q implies (öf)Ä(i) = (6ί)κ(ί') in ̂ 2, 
which in turn implies that {x'g){x't) = ix'gXx't') in Q\ i.e., π (^)^[π( ί )^ ] = 
Μ9)κΜίΊκ1 in 6', whence π:(β, f f ) -> ( β ' , / / ' ) is indeed an S-morphism. 

It should be obvious that whereas products and equalizers are easy to define 
in S, their dual concepts are a lot more complicated. This is observed in many 
familiar categories. A difficult problem in the study of a specific category is to 
describe its coproducts and coequalizers ("colimits") explicitly. 
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What is a mono in the category S like? We claim that it is the same as an S-
morphism that is injective as set mappings on the set of states and on the set of 
observables. For suppose (Sj, F j ) -> (S2, F2) is a mono and there are distinct 
states s and s' in S for which φ{8) Φ φ{8'\ then consider φ^, φ2· ( S i , F i ) ->· 

F J with φ γ mapping all states in to 5, φ 2 mapping all states in 5̂  to s\ 
and both φγ and φ2 acting as identity on F^. It is easy to check that in this case 
the S-morphisms φ γ and Φ2 are such that φ o φ^ = φ o φ^ but φι φ Φ2, 
a contradiction. So φ'.Ξ^ S2 must be injective. Also, suppose distinct ob
servables / and / ' in F^ are such that φ/ = (/>/', then consider φ^, ι/̂ 2· 
i{s}, {f,f']) (5 ' i ,Fi) where s e 5^, j/^i is the inclusion, and φ2{8) = 5, φ2f = 
f \ φ^/'=/. Again Φι, φ2 are S-morphisms with φ o φ^=φ o φ^ but φ^φ 
φ2, a contradiction. So φ:Ρι F2 is also injective. Conversely, it is clear 
that if an S-morphism (/>: (Sj , F j ) -> (S2, F2) is injective on both and F j , it is 
mono. 

N o w suppose (/) :(Si ,Fi) (-52, F2) is an equalizer and that is nonempty. 
(Fl is already nonempty because O g F j . ) Say Φ = eq((/^ 1,1/̂ 2) for φ^, 
φ2: (5*2, F2) - > (Χ, Η). Then, as an equalizer, φ: (S^, F^) -> (52, F2) is isomorphic 
to an inclusion (see Section I I I . 10). So in particular for f e and 5, s' e S^, 
f(s) = / ( 5 ' ) if and only if ((/>/)(0s) = ( # ) ( ( / > 5 ' ) , i.e., SJR^ ^ Φ{S,)/Rφf. Thus 
φ'^ is well defined on φ{8ι) and 0(Fi) and can be extended to an S-
morphism on (S2, F2). (We need a nonempty Sj for the same reason as in Ens.) 
So in S, an equalizer with nonempty domain is split mono. 

In the examples of Section I I I . 15 we will show that a mono is not neces
sarily an equalizer, so the hierarchy for monomorphisms in S is (for 
φ: (Si, F j ) (S2, F2) with nonempty Si) 

split mono o equaHzer => mono o injection (on both Si and FJ. 

14. Epimorphisms 

The dual concepts to split mono, equalizer, and mono are, respectively split 
epi, coequalizer, and epi. Explicitly, f:A^ Β (in a. category C ) is split epi if 
there exists a g.B-^A such that / o ̂  = 1^; / is a coequalizer if / = 
coeq(öfi,6f2) for some pair ^1, 0^2' C -> / I ; / is epi if for all pairs g^, 2̂̂  B-^ X, 
gi°f = 0̂ 2 ° / implies g^ = 0^2-

Dually, the hierarchy theorem for epimorphisms states that split epis are 
coequalizers and coequalizers are epis. Also, if / and g are epi or split epi, so is 
go f;if g o / is epi or split epi, so is g. (Again, the analogue for coequalizers is 
not always true, but is true when the category has coequalizer-mono 
factorizations; see Section I I I . 15.) 

In Ens, all epis split and all three concepts mean "surjective": since any 
function f'.A-^ Β composes equally with and /y^^ ĵ e 2^, it is clear that epis 
are surjective. The axiom of choice says that surjections are split epi. An Ens-
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Θ ^ Q 

Θ 

Θ 

Clearly, φ is both mono and epi. Equally obviously, there is only one way to 
define φ "^—namely, φ " M s the identity on md φ~^g = f. But such φ~^ 
would not be acceptable as an S-morphism because b and c are related in 
(S, {g}) and not related in (S, { / } ) . So this example shows that, in S, 

epi (and sometimes a C-epimorphism) will be denoted f:A ^ B. 
In S, an epi is the same as an S-morphism that is surjective on both the set 

of states and the set of observables. For suppose 0:(5i ,Fi)-^(52,F2) is an 
epi and there is an s 6 S2 - 0 (5 i ) , then φ^, i/^2*('^i.^i) ^ ( { 0 , 1 } , { 0 } ) , where 
Φι = Χφ(5,) on S2, Φι/ = O for all / e F2, Φ2 = is, on S2, φ ι ί = 0 for all / e 

F2, provide a pair of S-morphisms such that φ^ o φ = φ^ o φ hut φ^ ^ Φ2, 
a contradiction. So φ{Ξ^) = S2. N o w suppose there is an f e F2 ^ Φ{Ρι\ then 
φ^,φ2:(Ξ2,Ρ2)^{82,Γ2\ν/1\^γ&φι = l(s,.F2) í̂A2 = ls2on52 and 1̂ 27 = 0 for 
all / e F2, is an example in which φ^ o φ = φ^ o φ but φ^ Φ φ2, again a 
contradiction. Thus φ{Ρι) = F2. Conversely, it is clear that an S-morphism 
φ: (5i, F l ) ^ (^2, F2) that is onto both 52 and F2 is epi. 

Thus in S, we have 

split epi => coequalizer => epi o surjection (onto both 2̂ and F2). 

In the next section we show that the two preceding one-way implications 
are indeed irreversible; so the preceding is the hierarchy for epimorphisms 
in S. 

Note that although the two hierarchies in S for the dual concepts of 
monomorphisms and epimorphisms are not the same, this is not a counter
example to the principle of categorical duality (see Section 11.14). The principle 
only states that if Σ is a statement about a category C, then Σ ° Ρ is universally 
true if Σ is. For a particular category, it may very well happen that Σ is true but 
Σ ° Ρ is not. 

75. Two Examples 

Let S = f'.S^U with f{a) = 0, f{b) = 1, / ( c ) = 2; i.e., S/R^ = 
{ { a } , { i ) } , { c } } , and g:S-^U with g(a) = 0, g(b) = g(c) = 1; i.e., S/Rg = 
{ { a } , { f c , c } } . Let 0 : ( 5 , { / } ) - > ( S , { ^ } ) be the identity on 5, and φ/= g. So 
diagrammatically we have 

iSAf})—^(S,{g}) 
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(i) mono and epi i> isomorphism; 
(ii) mono i> spHt mono (hence mono ^ equahzer); 

(iii) epi =f> spHt epi. 

Further, in this example, since φ is mono, any ψι,φ2:{Χ,Η)-^{Ξ,{ί}) with 
φ o = φ o impHes φι = φ2- But coeq(i/^i,(//i) = \^s,{f}) ^ this 
example also shows that, in S, 

(iv) epi => coequalizer. 

As a second example, consider S = {a,b,c,d}, S/Ri = { { a } , { f c } , { c } , { d } } , 
S/Rf = {{a,b]Ach{d}h S/Rg = {{a}Akcl{d]l S/R, = {{aM{d}h 
and φ,:(S,{i})-^(SΛLg}) with identity on S, φ,ΐ = /, φ2:(8,{ί})-^ 
(5 , { / , ^ } ) with identity on 5, φ21 = g, φ:{S,{Lg}) {S, {h}) with identity on 

0 / = φ0 = h. Diagrammatically, 

{SAh}) 

It is easy to check that φ = coeq(i/^i,(/^2)- There can be no φ:{SAh})-^ 
{SALg}) such that φ o φ = l^^sAh})^ because we must have either φΗ = f or 
φΗ = g, neither of which is acceptable for φ to be an S-morphism. This shows 
that φ is not split epi. Thus in S, 

(v) coequalizer => split epi. 

£. Images and Subobjects 

16. Image Factorization 

The categorical view of the image of a function / is as a factorization 
/ = i ° p, where ρ is surjective and i is injective. T w o of the many possible 
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with π = 0 on (5 ' i ,Fi) and i = inclusion is clearly an epi-equalizer factor
ization φ = I o nof φ (see Section I I I . 10 that i may not be well defined). Con
sider the equivalence relation R = {(s ,s ' ) G 5i χ : (/>(s) = (/>(s')} on 5̂  and 
R = { ( / , / ' ) G Fj X F^\φf = (/>/'} on Fi ; the diagram 

( 5 „ f , ) ^ _ ^ ( 5 2 , F 2 ) 

{SJR,FJR) 

with π = natural projection (where FJR c U^'"* is to be interpreted as in the 
construction of coequaHzers in Section I I I . 12) and J defined by I ( S ) R = </)(s), 

such views in an arbitrary category are as follows. Given a morphism f:A-^B 
in C, an epi-equalizer factorization of / is / = / o ρ with ρ an epi and / an 
equalizer. The dual concept is a coequalizer-mono factorization f = i o ρ with 
ρ a coequalizer and / a mono. It is a general theorem that epi-equalizer 
[and coequalizer-mono] factorizations are unique up to isomorphism. As 
a corollary, / is an isomorphism if and only if / is both an equalizer and epi 
and if and. only if / is both a coequalizer and mono. (Note that a morphism 
that is epi and mono need not be an isomorphism, as we saw in Section I I I . 15 
for the case of S.) 

We say C has epi-equalizer [dually, has coequalizer-mono'] factorizations if 
every morphism in C has an epi-equalizer [respectively, a coequalizer-mono] 
factorization. The category Ens has epi-equalizer and coequalizer-mono 
factorizations and they both coincide with surjective-injective factorizations. 

As a second example, the category Top of topological spaces and 
continuous functions has epi-equalizer and coequalizer-mono factorizations. 
Given a continuous function f:A-^ Β with image factorization / = i o pat the 
level of Ens we can provide / ( A ) with the subspace topology induced by i, then 
(p, i) is an epi-equalizer factorization, or we can provide / ( A ) with the quotient 
topology induced by p, in which case (p, / ) is a coequalizer-mono factorization. 
The two image factorizations are clearly not in general homeomorphic. 

The category S, also, has epi-equalizer and coequalizer-mono factoriza
tions. The diagram 

1 ^ ( 5 2 , ^ 2 ) 
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i{f)j^ = 0/(since sRs'iff 0s = φ8\/ΚΓ\ηφ/ = ψ / ' , íis well defined) is then a 
coequalizer-mono factorization of φ. 

Note that although both the epi-equalizer and coequalizer-mono factoriza
tions are unique up to isomorphism, the two factorizations are not necessarily 
isomorphic, as we saw in the case of Top. The following example shows this for 
S (same φ as in the first example of Section I I I . 15): 

{SAg}) 

(S.{g\) 

equalizer 

7Γ = 1 

iSAg}) 

coequalizer Q) mono 

(SAf}) 

It is interesting to compare the image factorizations in Top and S. 

/ 7. Subobjects 

In Ens (and in most of the categories studied in linear algebra), since a mono 
splits and all three definitions of monomorphism coincide with injection, there 
is only one way to define a subobject—namely, we say A is a. subset of Β (up to 
isomorphism, of course) if there is an injection f:A-^B.lnsi category C, the 
most common definition of a subobject of an object Β is (the isomorphism 
class of) an object A with a monomorphism f:A-^B. 

In S, as we saw, there are two distinct types of monomorphisms—namely, 
that of an equalizer ( = split mono) and that of a mono ( = injective 
morphism). W e shall say that 0: (5i , ) (52, F2) is an S-subsystem (or simply 
( 5 i , F i ) is a subsystem of (52,F2)) if φ is an equalizer, and it is an 5-
monosubobject (or simply (5^, F J is a monosubobject of (52, F2)) if φ is mono. 
So a subsystem is a monosubobject but not vice versa. Note that subsystem 
implies that for each f e SJRf ^ φ{8ι)/Κφ^ {φ:8^Κ^ S2/Rφf is one-
to-one), i.e., f{s) = f{s') if and only if {φ/){φ8) = ((/>/)(0s'); whereas mono
subobject does not have this "backward implication" {φ:SJRf ^ S2/Rφf 
is not necessarily one to one). A subsystem, therefore, is the appropriate sub-
object of a system that preserves most of its structures. 
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18. Λ Partial Order in S 

DEFINITION . Let [S^, ).and (S2, F2) be S-objects. Then (5^, F j ) < (^2, F2) 
if 

(i) (Si,Fi)isamonosubobject of (S2,F2), i.e., there is a mono φ:{3γ,Ρι) 

(ii) Sj and are finite sets. 

It is clear that < is reflexive on finite S-objects, i.e., on (5, F ) , where S and F 
are finite sets, and that < is transitive. N o w suppose (5 ' i ,F i ) < (S2,F2) (with 
mono Φ) and (52, F2) < (5^, F i ) (with mono φ), then φ: 8^-^82 and 0: F^ -> F2 
are onto because they are injections between finite sets of the same cardinality. 
50 φ: 81 82 and φ'.Ρ^ F2 are Ens-isomorphisms. Further, since φ and φ 
are order-preserving on the Hnkage relations on the finite sets F̂  and F2, we 
must have 8JRf ^ 52/^^/ for every / e F^. Thus ( 5 i , F i ) is isomorphic to 
{82, F2) and so < is antisymmetric (up to isomorphism). Therefore < is a 
partial order on (the isomorphism class of) the finite S-objects. 

What can we deduce from the statement ( 5 i , F J < (52,F2)? First, we have 
51 52 and in fact for every se 8^ and every / G F^ (s)^- ((/>s)^ f. So there is a 
possibility of new states appearing in the whole set and/or in each equivalence 
class. This reflects growth in some respect. The possibility that F2 - 0 ( F J is 
nonempty indicates the emergence of more observables as the system becomes 
"more advanced." In particular, there is the possibility that sRp/ in 5̂  but 
there is a G F2 — 0 ( F i ) such that g{φs) φ g(^s')\ so states indistinguishable 
before could be separated—a model of differentiation. On the other hand, it 
could happen that f(s)Φf(s') in ( 5 i , F i ) but (φf){φs) = {φf)(φs') in 
(52,F2)—a model of integration or fusion. Also, since in this case 'distinct' 
states become indistinguishable, there is an indication of decay, or "loss of 
recognition abilities." 

So it seems that with an appropriate totally ordered subset of this partially 
ordered set of finite systems, a model of the development-senescence process 
could be constructed. This will be a subject of study in Section V I I . 

As a final note, condition (ii) in the definition of < (that 5i and F2 are to be 
finite sets) looks like a very severe mathematical restriction. But in mathemat
ical modelling of natural systems, a finiteness restriction is not unrealistic: All 
we require is that the sets are finite, and there is no restriction on how small the 
sets have to be. So the sets could be singletons, have 10^^ elements, or have 
10^^^ elements and still be finite. After all. Sir James Jeans (1945) defined the 
universe as a gigantic machine whose future is inexorably fixed by its state at 
any given moment, that it is "a self-solving system of 6N simultaneous 
differential equations, where Ν is Eddington's number." Sir Arthur Eddington 
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IV. D Y N A M I C A L S Y S T E M S 

The world is a sojourn of all things. Time is a transversal of all ages. The essence of life is 
change. 

Lao Tse 

A . Introduction 

So far, the discussion has been entirely static. W e now include dynamical 
considerations. 

First, we shall restrict our attention to the dynamics of special physical 
systems called meters, through which our observables are defined. Then we 
shall see that general dynamics, i.e., a change of state in arbitrary systems 
through interaction of their states, is a corollary of the properties of meters 
and our fundamental hypothesis (Proposition 1, Section I I I . l ) that all physical 
events can be represented by the evaluation of observables on states. 

7. Meters and Observables 

A meter Μ is a set in which a dynamics can be induced through interaction 
with the states of a system 5. By hypothesis, Μ is in a particular reference state 
mo, and Μ is measuring a specific observable / of S, in the following sense. On 
interaction of mo with a state s G 5, a change of state (i.e., a dynamics) is 
induced in the meter, carrying Μ (possibly asymptotically) to a state m{s), 
which is labelled with a real number. The number assigned to m{s) is then 
defined as the value f(s) of the observable / of S. T w o states s,s'eS produce 
the same response in Μ if and only if f(s) = f(s'). So the meter Μ can be 
regarded as interacting with the "reduced" states of S/Rf. Thus every meter 
defines an observable, and conversely for every observable we assume that 
there exists a meter in terms of which it could be defined. 

2. Meter Dynamics 

Since a change of state is a physical event, and since the very essence of the 
properties of a meter is that a change of state occurs as a result of interaction 
with other systems, it follows from Proposition 1 that every change of state can 

(1939) asserted (perhaps with more poetry than truth) that Ν = 2 χ 136 χ 
2^^^ ( ' ^ 10^^) is the total number of particles of matter in the universe. The 
point is that it is a finite number. Thus the set of states of a natural system is 
certainly finite at one time (this is not to be confused with the set of all possible 
states a system can have), and the set of observables on a system at one time is 
also clearly finite. 
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B. Dynamics and D-Objects 

We shall first consider the objects of the category D of dynamical systems. It 
will turn out (Theorem IV.5) that our definition of dynamics is a generalization 
of the usual definition (as in Section IV.2 and Rosen, 1971). 

3. Dynamics 

DEFINITION . A dynamics on a set 5 is a mapping Τ from a subset of 5 χ (R 
into 5 satisfying the following conditions: 

(i) For every xeS there exist a^,b^EÜ{= the extended real numbers 
[ — 0 0 , + o o ] ) with — o o < a ^ < 0 < f c ^ < + oo such that T(x , t) is defined if 
and only if < í < b^. (The notation α ^ [ Τ ] and b^lT^ will be used when the 
dependence on Τ is emphasized.) 

(ii) The "initial value property" T(x ,0 ) = χ holds for all χ e S. 
(iii) The "group property" T ( T ( x , í i ) , Í2 ) = T(x,t^ -f- Í2) holds if both 

Γ(χ, í i ) and also the left or right side of the equation is defined. 

LEMMA . The preceding conditions (i), (ii), and (iii) are equivalent to (i), (iii), 
and 

(ii*) Τ maps onto S. 

Proof. Clearly, (ii)=>(ii*). 
Conversely, assuming (i), (iii), and (ii*), take xe S. Then (ii*) implies that 

there exists a y e S and there exists a t e {ay,by) a U such that χ = T{y,t). 
N o w using (iii) and (i), Τ(χ,Ο) = Τ ( Γ ( ^ , ί ) , 0 ) = Τ(>' , ί + 0) = T{y,t) = χ, 
proving (ii). Π 

be regarded as being specified by the evaluation of observables on states and 
that every dynamical interaction between systems can be locally represented in 
terms of the dynamics induced on meters. Thus the reciprocal interaction of 
two meters sets up a situation similar to that of the "coordinate patches" in 
differential geometry and is the prototype for general dynamics. 

A dynamics on a set of states S is usually defined as a one-parameter group 
(with time being the parameter) of automorphisms (i.e., bijections) on 5, 
{7^ G s^{S):t eU}. These automorphisms are in general locally determined 
through identification of local dynamics with meter dynamics, measuring 
some observable / of another system S\ So there is a local correspondence 
{S\ {f})^{S,{Tj}) between S-objects and "systems with dynamics." 

In the next few sections we shall study some of the properties of the 
collection of "systems with dynamics," again this will be in the setting of 
category theory. 



2. CATEGORICAL SYSTEM THEORY 101 

4. Phase Space 

It follows from the lemma that the domain of Τ is nonempty if and only if S 
is nonempty. In fact, S is the projection onto the first coordinate of the domain 
of T. Also, S = the range of Γ; we shall call S the phase space of T. 

Each set S is the phase space of at least one dynamics, namely the trivial 
dynamics Is defined by Is{x, t) = χ for all χ G 5 and all t e U. 

As an example of a nontrivial dynamics, consider an autonomous 
differential equation (which, incidentally, started the study of dynamical 
systems) 

dx/dt = fix) 

on an open subset 5 of R*, where f:S -^U^ is continuous and Lipschitz. Define 
a dynamics Τ on S as follows: for xe S, let y{t) be the unique solution of the 
equation that has y{0) = χ and maximal open interval (a^, in U as domain; 
then set T(x , t) = y{t) for ί G (a^, bj. It is easy to check that T: dom Τ -> S such 
defined satisfies the definition of a dynamics. 

5. Solutions and Translations 

Analogously to the preceding example, we can define solutions of a 
dynamics Τ on 5 as maps, for each xe S,y^: (α^, b^) S, y^it) = T(x , t). Then 
it follows that ^^.(O) = x, ynxji^iti) = yxih + h) for all χ G S and appropriate 
í i , Í 2 e U. The image of each y^, i.e., the set yxia^.bj = {yx{t):t G (a^^b^)} is 
called a trajectory of the dynamics. Note that Xj = y^^(t) if and only if 
^2 = YJCI(~Oi so for each χ e S there is only one trajectory passing through 
it, namely, yxia^^b^). This is the unique trajectory property, or the principle of 
causality. Clearly, the set of solutions {y^-.x Ε S } determines Τ uniquely. 

On the other hand, fixing t and varying x, we can define translations of a 
dynamics Τ as, for each ί G R, TJ: dom T^-^ S where dom 7̂  = { x G 5: T(x , i) is 
defined}, 7;(x) = T(x , i ) . Then T^.S^S with Γο(χ) = χ, τ;^ o = + and 
Ttix) = yx(t) (for all χ and appropriate t). Again, it is clear that the translations 
{7^: Í G IR} determines Τ completely. 

LEMMA . Each translation 7̂ : dom S is injective. 

Proof. Suppose T^x) = T,{y), i.e., T ( x , i ) = T ( y , i ) . Then χ = Γ(χ,Ο) = 
T{T(x,t),-t)= T{T{yj\-t)= T(y,0) = y. Note the second preceding 
equality uses the fact that both T(x,t) and T(x ,0 ) are defined, hence so is 
T ( T ( x , i ) , - 0 ; a similar comment goes to the fourth equality. [Here is an 
illustration of the importance of the or in condition (iii) of Definition IV.3. 
There is a profound difference if (iii) is altered to hold only when all terms 
concerned are defined.] • 



102 Α. Η. LOUIE 

is equivalent to 

I.e., 

ax<t-\-t'< i?^. 

a^ - t <f <bx- t. 

Thus = a^-t and ft^^^^,,) = bx-t. • 

COROLLARY 1. If χ e S and either > — OO or < + OO, then the trajec
tory yxi^x^b^) = {T(x,t):ax < t < b^} has the cardinaHty of the continuum. 

Proof If α^,> - 0 0 [respectively, fe^ < + O O ] , then all ^j^^^,,) = - ί 
[respectively, all bri^^^^ = b^- t] are distinct for t varying over (a^^b^). So all 
T{x, t) as t varies over (a^, b^) must be distinct. • 

COROLLARY 2. If Τ is a dynamics on a countable set S, then dom 
Τ = S X R. • 

This last corollary is particularly interesting: on a countable (including 
finite) phase space S, the generalized and the usual definitions of dynamics 
coincide. 

THEOREM . If dom Τ = S χ U, then each translation 7;: 5 5 is an auto
morphism (of sets, i.e., a bijection). 

Proof, Tj is injective by the preceding lemma. U yeS then x=T{y, —t) = 
T.,(y) is defined, hence y = T(y,0) = T{T{y,-t\t) = T{xj) = T,{x). So T, is 
surjective. • 

So when dom T = 5 x l R , { 7 J : I G [ R } i s a one-parameter group of (Ens-) 
automorphisms on 5, i.e., a dynamics in the usual definition. So our definition 
of a dynamics can be considered as a generalization of the usual concept. 

6. Bounds 

DEFINITION . The and appearing in Definition IV.3(i) are called the 
bounds of Τ at x. 

These bounds have the following interesting properties. 

LEMMA . For every xe S and for every t e (a^^bj, ^T(x,t) = ^χ — ^ ai^d 

Proof. For χ 6 5 and teia^^bj, T{x,t) is defined. N o w according to 
Definition IV.3(iii), T ( T ( x , i ) , ί ' ) is defined if and only if T(x, t H-1') is defined 
[here again is where the or in (iii) is crucial]; then by (i), this means the 
statement 



2. CATEGORICAL SYSTEM THEORY 103 

C. D-Morphisms 

We have studied the objects of D in some detail. The next question is, "What 
are the morphisms?" How shall we define a D-morphism so that D-isomorphic 
objects are identical in their dynamical behaviour? 

7. Invariance and Relative Dynamics 

DEFINITION . If T is a dynamics on a set S, then X cz S is invariant under 
Τ (or simply T-invariant) if T(X, IR) cz X (i.e., for every xe X and for all 
te(aM, T{x,t)eX). 

Since X = T{X, { 0 } ) cz T ( X , (R), the definition is equivalent to T ( Z , (R) = 
X. Note that S itself, the empty set, and any trajectory of Τ are all invariant 
under T. 

It is clear that if >1 is a T-invariant subset of 5, then the restriction of Τ 
to (A X I R ) n d o m T is a dynamics Τ on A, and for χ e A, a^\_T^ = 

On the other hand, however, if is a subset of 5 and if the restriction Τ of 
a dynamics Τ on S to some subset of ( ^ χ (R) η dom Τ is a dynamics on A 
(we shall call Τ a relative dynamics on A induced by Τ on S), A is not neces
sarily T-invariant. All is required here is that for xe A, 

a.in < α . [ Γ ] < 0 < ¿ , [ r ] < f ) , [ T ] 

and that Γ satisfies Definition IV.3. (In particular, a^lT'^ and b^lT^ satisfy 
Lemma IV.6.) Here dom T' c ( ^ χ IR) η dom Τ but not necessarily equal. 

So we have 

A is T-invariant => Τ induces a relative dynamics on A, 

but not conversely. 

8. Dynamical System 

DEFINITION . A O-object—a dynamical system—is a pair (S, D ) , where S is 
a set (of states, the phase space) and D is a set of dynamics on S. 

We always assume that the trivial dynamics Is is in D, so in particular D is 
always nonempty; but again for brevity we shall sometimes omit listing Is in 
specific examples. Note that if a dynamics is considered to be imposed on S 
through interactions with the states of other systems, then Is can be considered 
as being imposed on S through interaction with the (only) state in S/Rq (where 
0 is again the zero observable as in Section I I I ) . 
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DEFINITION, φ e D((Si ,DJ , (S2,1)2)) if it is a pair of functions φ: S2 
and φ: -> D2 (with φIs^ = / s j , and such that for every Τ e the diagram 

dom Τ 
0 X Iff 

dom φΤ 

ΦΤ 

φ 

commutes [i.e., for every xeS^ and for all t e ( ^ ^ [ T ] , ^ ^ [ T ] ) , φ{Τ{χ,ή) = 
φΤ{φχ,ήΙ Note this implies that for all TeD^ and for all xeS^ 
αφΙΦη < α , [ Τ ] < O < ί ) , [ Τ ] < b ^ M n 

Also note that the diagram 

5i X R • ^2 X 

/ 5 , 0 / 5 , = Is, 

Φ 

trivially commutes; so the inclusion of Is into the dynamics does not create any 
problems. 

It follows from the definition of a D-morphism that φΤ induces a relative 
dynamics on φ{8ι) with relative bounds α ^ [ Τ ] and b^lT^ at φχ—in fact, if 
T G Di induces a relative dynamics on A a S^, then φΤ induces a relative 
dynamics on φ{Α) c S2. In particular, this last statement holds for A a 
invariant under Τ (see Section IV.7). Note, however, that A invariant under Τ 
does not imply φ A invariant under φΤ. 

Trivially, 1^s,d)' ( S , D) (S , D) sending each xeS and each Τ G D to itself is 
the identity morphism in D( (5 , D) , (S,D)) . 

10. Composition 

Composition of D-morphisms is defined via compositions of functions on 
the states and on the dynamics. The commutativity condition is represented by 
the self-explanatory diagram 

9. Ό-Morphism 
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(φ°ώ)Χ IR 

domT—i!—ll άοιη{φ°φ)τ 

ΦΤ {φοφ)Τ 

It is now easy to check that with the preceding definitions, D is a category. 

11. Isomorphisms 

If ( / > : ( 5 i , D i ) - > ( S 2 , / ) 2 ) and φ:{82,02)^(Ξ,,0,) are such that φοφ = 
^iSuDi) and φ o φ = 1(52,D2)' then it follows that φ:Ξι - •S2 and φ'.Ο^ D2 
are bijections. Further, with Τ G and φΤ = U e D2ÍS0 φϋ = Γ ) , we have 

d̂om U dom U dom U 

U 

dom Γ 

υ 

5. 

In particular we see that υ = φΤ = φοΤο(φ χ 1^), and for each xe 
^ΦχίΦΏ = ^χίΏ and Βφ^ΙφΤ^ = ¿ ^ [ T ] , hence dom φΤ ^ dom T. 
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D. Constructions in D 

12. Products 

Let {{Si,Di)\i Ε 1} be a family in D. Then, letting the phase space be 
S = Π S,, for each choice of (7]: ie I)eU Z),, it is natural to define a dynamics 
Τ on S—the product dynamics of {7 ] : i e / } — b y 

T^((Xi)ie/,0 = (7;(x,,i)L/. (1) 

One can easily check that the canonical projection maps Uj with χ = 
( ^ i ) i e / ^ ^ i ' Τ = {Ti)i^i\-^ Tj are indeed D-morphisms and this con
struction satisfies the universal property for categorical products. 

There is, however, one problem: In Eq. (1), it is required that 7](x,,i) be 
defined for all / e / . It is possible, when / is infinite, that for some choice 
of the x,'s, we have a^χ^^lT] = sup{a^XT^j-.i e 1} = 0 and/or b^^^^T] = 
inf{/?^.[7]]: / G / } = 0. Then in this case Τ cannot be a dynamics (we need 
a <0< b). 

So when is Τ = ( 7 ] : / G / ) a dynamics on S? For a^^^^T] = sup{a^,[7;] : 
f G / } to be negative, it is sufficient that a^.^TJ = — 00 for all but finitely many 
i G / ; similarly, for b^^.^T] =•-· inf{/}j,.[7]] :ie 1} to be positive, it is sufficient 
that b^.lTi] = + 00 for all but finitely many / G / . Thus when dom 7] = 5, χ [R 
for all but finitely many i, Τ is a dynamics on 5. In fact, it turns out that this 
is also a necessary condition: 

THEOREM . A necessary and sufficient condition for Τ defined by Eq. (1) to 
be a dynamics on 5 = Π 5, is that dom 7] = 5j χ [R for all but finitely many 
iGl. 

Proof. The sufficiency is proved above. As for the necessity, suppose J 7 
is a countably infinite subset such that dom 7} Φ Sj χ U for j G J. Then for 
each j Ε J there exists yj Ε SJ with finite bound(s). Assume, without loss of 
generahty, that by.lTj] < -f 00, and that J = Ν (i.e., since J is countably 
infinite, let the corresponding element in Ν in the enumeration of J to 

So we see that to say ( S i , D J is isomorphic to (82,02) means that they are 
the "same" systems down to the fact that corresponding dynamics have iso
morphic domains. When dynamical systems are considered as meters, two 
isomorphic systems are abstractly identical in the sense that they are mea
suring the same observables. There is a "dictionary" φ<-^φ that converts 
one system to the other. This reparametrization can be physically realized as a 
scale conversion. 
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je J be j ) . Define = max {0,63,. [ 7 } ] - I/7} and Xj = Tj(yj,tj). Then by 
Lemma IV.6 

b.XTj] = fcr,„,„[7].] = b,^[Tj] - Í , < 

N o w pick X, 6 Si arbitrarily for / φ J, and let χ = (χ,: i e / ) . Then 

K i n = inf fc.,[7;] < MK^lTj] < inf 1/y = 0. 

is I jeJ je J 

Hence Τ cannot be a dynamics on S. • 
So the D-product of the family {(5,,Dj):¿ G / } is defined as (S,D), where 

S = n 5,, and D = the subset of Π D,- such that Τ = ( 7 ] : i G / ) G D if and only 
if dom Ti = SiX U for all but finitely many i G / . Note that 4 = (Z^.: / G / ) 
(the trivial dynamics on 5) is such that dom Is. = 5, χ IR for all / e / , hence 
/s G Z) always. Also, note that D = Π Dj when / is finite. 

It is interesting to note the resemblance of the definition of product dynamics 
to that of the product topology. Recall that in a product topological space 
X = n Xi, sets of the form A = U Ai, where each A^ is open in X, and Ai = 
for all but finitely many i, form a base for the product topology. 

Since D has products, it has a final object. The final object in D is (1, {I^}), 
where 1 is a singleton set. For any dynamical system (5,D), the unique D-
morphism φ: (5, D) -> (1, {I^}) is clearly the one sending all χ G 5 to 1 and all 
T G D to / i . 

13. Coproducts 

Coproducts of dynamical systems can also be defined. Let {(5 , , D, ) : / G / } be 
a family in D, let the coproduct phase space be S = U S, = u{{i} χ S,), and let 
the coproduct dynamics D be U D,. A dynamics (i, T ) G D is defined by 

iimjx)t) = [^'^'^^'^'^^ ^ = '^ a . m < r < w ] 

So, roughly, (i, T ) restricted to {1} χ S, is Τ on Si and (/, T ) restricted to 
USj'.j^i is the trivial dynamics. Note we have « ( , x)[(i, F ) ] = α ^ [ Τ ] , 
b^AiU 7^)] = and for j Φ i a,,,^,[_{i. Τ ) ] = - ¿'(....[(i. Τ ) ] = + oo, 
i.e., dom(i. Τ) = ( { / } χ dom Τ ) |JU(S,- xU:j Φ i). 

The canonical injection maps /y:(Sy,D,)-^(5,D) with xi->(7,x) and 
Τ (y. Τ ) are such that 

ij{T{x,t)) = (7, F(x,i)) = (7, F)(( ; ,x) , i ) = /,T(i,.(x), i ) , 

i.e., they are D-morphisms. One easily checks that this construction satisfies 
the universal property for categorical coproducts. 
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£. Hierarchy of D-Morphisms and Image Factorizations 

14. Monomorphisms 

The hierarchy for D-monomorphisms is 

split mono => equalizer o mono o injection on S and D. 

It is clear that a D-morphism that is injective on both S and D is mono. T o 
show the converse, let φ : ( 5 ^ , D J ( 5 2 , 1 ) 2 ) be a mono. Suppose there 
are distinct χ and y in 5̂  with φχ = φy. Then φ^, i / ^ 2 ' ( ' S i , D i ) ( 5 i , D i ) , 
with φ^ sending all of 5i to x, φ2 sending all of 5i to y, and Φι,φ2 = identity 
on D i , are D-morphisms with φ^φι = φoφ2hut φ^ Φ φ2.^ contradiction. 
So φ must be injective on 5i. Likewise suppose there are distinct Τ and T' 
in Di and φΤ = φΤ. There are two cases to consider: either T(x , t) = T '(x, t) 
whenever (x, t) e dom Τ Q dom Τ (hence dom Τ Φ dom Τ ' ) , or there 
exists (χο, ίο) ^ dom dom Γ ' for which Γ ( χ ο , ί ο ) 7̂  ^'(^o^^o)- In the 
former case defined U to be the restriction of Τ (and T) to dom Τ Q dom Τ', 
then lAi, φ2\8Λ^])-^{^^Ρ>χ\ with φ^, .̂ 2 = identity on 5^, φ^υ = Γ, 
φ2υ = Τ\ are D-morphisms with φ o φ^ = φ o φ^ but ΦιΦφ2' In the 
latter case, let 5 = dom TJ^Qdom Τ;^; then φ^, φ2.{S,{ls})•^{S^,D^\ with 
i/^i(x) = T(x , io ) , Φι{χ) = Τ ' (χ , ίο) , Άι4 = = 4,, are D-morphisms such 
that φ ο φ ^ = φ ο φ ^ ^ because {φ o φι){χ) = φ{Τ(χ,ί^)) = φΤ(φχ,ίο) = 
φΤ{φχ,ίο) = φ(Τ{χ,ίο)) = {φοφ2){χ). Note that Χο e 5 is such that 
Φι(χο) = Τ ( χο , ίο ) Φ T'ixoJo) = ΦιίΧοΙ hence φ^Φφ2. In both cases we 
are led to contradictions. So φ must be injective on as well. Thus a 
D-mono is injective on both the sets of states and dynamics. 

T o show that a mono 0 : ( 5 i , D i ) ( 5 2 , D 2 ) in D is an equalizer φ = 
eq(i/^i,(/^2X Φι and Φ2 are defined as follows. First, let 5 = { 0 } χ 
0 ( 5 i ) l J { l , 2 } X (52 0(5i))—i.e., 5 is the disjoint union of one copy of 
0(5i) and two copies of 52 ^ φ (5ι)—and similarly let D = { 0 } χ 
ΦΦι)[]{1^} Χ Φ 2 ^ 0Φι))· The members of D are defined in Table I. 
One can easily check that D is indeed a collection of dynamics on 5 [e.g., each 
(0, T ) is a dynamics on 5 because Τ induces a relative dynamics on (/)(5i) with 
the given relative bounds]. N o w let φ^, φ2·{8ι^Ρ>2) - ^ ( 5 , D ) be 

f(0,X), X 6 0(5i) f(0, Γ ) , Τ e φ(0,) 

'̂ '̂ ''̂  1(1, X), X φ φ(Ξ,) 1(1, η Τ φ φ{0,) 

The initial object of D is ( 0 , { / 0 } ) . For any dynamical system ( 5 ,D ) , the 
unique D-morphism from ( 0 , {I^}) to {S,D) is the inclusion of 0 in 5 with 
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((Ο,χ),ί) ((ΐ ,χ), ί) ((2,x),r) 

(0, T) (0, T{x,t)f ( l , T ( x , í ) r (2 ,T (x , í )r 
(IT) (0, Γ(χ,ί)), (0, Τ(χ,ί)), (2,χ)^ 

if Τ{χ,ήΕφ{8,); if Τ ( χ , ί ) 6 ψ ( 5 , ) ; 
( Ι ,Τ(χ , ί ) ) , ( Ι ,Γ (χ , ί ) ) , 

if if Τ(χ,ήφφ{8,ν 
(2, T) (0, Τ{χ,ή), (0, Τ(χ,ί)), 

if Τ{χ,ήΕφ{Ξ,); if T(x , í)e(/)(S,); 
(2, Τ{χ,ή), (2, Τ{χ,ή), 

if Τ{χ,ήφφ{8,ν if Γ(χ , ί)^Ψ(5ι)/ 

" The value of the dynamics i at the point; is given in the (row i, column 7)-position. 
TgD2 a n d x G 5 2 . 

* For üylU] < t < bylUl where φγ = χ,φυ = Τ. 
'Fot α χ [ Γ ] < í < 6 ^ [ T ] . 

For -00 < ί < + 00. 

for / = 1,2. One can check that ψ^, φ2 are indeed D-morphisms, that 
(/>(5i) c: S2 and </>(Di) c= D2 are the sets on which and φ2 agree, and 
φ^οφ = φ^οφ. Since 5i ^ φ{Ξι) and ^ (/>(Di), φ: (Si, DJ-^(52,1)2) is 
(up to isomorphism) the equahzer of φ^ and φ2. (It is clear, as in S, that 
the equalizer of a pair of morphisms in D is the inclusion map of the sub
system on which the morphisms agree.) 

Finally, we show that an equaHzer is not necessarily split mono. Let 
Si = {a,b} and S2 = {a,b,c}. Let 7:Si χ ÍR-^Si be defined by Τ(α,Ο) = 
T(fc, 0 = a, T(fo,0) = Τ(α, r) = b for ί / 0. Let L :̂ S2 x IR S2 be defined by 
U{a, 0) = Uib, ή = a, Uibfi) = υ{α, t) = b fov t Φ 0, and U{c, t) = c for all t. 
It is easy to see that Τ and V are dynamics on Si and S2, respectively. N o w 
let ( / > : ( S i , { T } ) - ^ ( S 2 , { l / } ) be φ{α) = a, φφ) = b, and φΤ = U. Then φ is 
a D-morphism. 

is.AT}) -—• {S2ÁU}) 

τ c ^ " D 
V b I b ^ υ=φΤ 

TABLE I 

Definition of Dynamics in D" 



110 Α. Η. LOUIE 

Any definition of φ ^ must have φ ^(a) = a, φ \b) = b, and φ ^JJ = T\ 
but either φ~^{€) = α or φ~^(c) = b would be inconsistent: if 0"^(c) = a 
then for t Φ 0, φ-\υ(€,ΐ)) = φ'^α) = a but 7 ( 0 - ^ 4 0 = T{a,t) = b, hence 
the diagram 

5. X 

U 

Φ' X Iff 

φ' 

5, X 

at ( ^ 7 ^ 0 ) 

C H ai^b 

is not commutative; similarly, for φ ^(c) = b. Thus φ does not split. 
So we have established, in D, 

split mono => equalizer o mono <=> injection on S and D. 

We can now define a O-subobject—a dynamical subsystem—(5i,Di) of 
(82,02) to be one such that there exists a mono ( = equalizer = injection) φ 
from (Si,Ol) to ( S 2 , / ) 2 ) . Note that in this case, since φ(8ι) ^ , each TeO^ 
can be considered as the relative dynamics on induced by the dynamics φΤ 
on 

75. Image Factorization Systems 

Before we look at the hierarchy of D-epimorphisms, it would be useful to 
consider some more general concepts from category theory. 

DEFINITION . An image factorization system for a category C is a pair 
( ^ , ^ ) , where S' and ^ are classes of C-morphisms such that 

(i) é' and are subcategories of C [i.e., compositions of morphisms in ^ 
(respectively, JÍ) stay in ^ (respectively, ^ ) ] ; 

(ii) every element of <f is an epi (possibly more; e.g., it could be a 
coequalizer) and every element of is a mono (possibly more); 

(iii) every isomorphism is in both S and JÍ; 
(iv) every morphism / in C has a unique (up to isomorphism) é-JÍ 

factorization; i.e., there exist ee and me JÍ such that / = mo e, and 
whenever e' eS and m' e Ji satisfy f = m' o e', there exists a unique 
isomorphism φ with e' = φ o e and m' o φ = m. 
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If C has epi-equalizer factorizations, then {ß,Ji) is an image factorization 
system if ^ = all epis and Μ = all equalizers. Dually, if C has coequalizer-
mono factorizations, then S = all coequalizers and J/ = all monos form an 
image factorization system for C. 

A consequence of (iv) in the definition is that if a morphism is in both <f and 
^ then it is an isomorphism; i.e., the converse of (iii) holds. 

THE D I A G O N A L F I L L - I N LEMMA . Given the commutative square 

with eeé and m e J(, there exists a unique h:B-^C with f = ho e and 
g = m o h. 

Proof, Consider the diagram 

Define A = o </> o 2̂ · • 
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16. Epimorphisms 

The hierarchy for D-epimorphisms is 

spHt epi => coequaHzer <=> epi <=> surjection on 5 and D. 

It is clear that a D-morphism that is surjective onto S and D is epi. For the 
converse, let φ:{8ι,0^)^(82,02) be an epi. Suppose there exists L/ e D2 ^ 
0(Di) . Let S = 52 U {a,b} where α,Βφ ^2, and D = {0,1} χ O2. (0, T)GO 
is defined on 5 as Τ on S2 and identity on {a, b}.(\,T)e Ois defined on 5 as Τ 
on ^2 and it "interchanges" a and b (i.e., (1, Τ)(α, 0) = (1, T)(b, i) = OÍ and (1, T ) 
(/>, 0) = (1, Τ)(α, ί) = b for ί 9̂  0). Then ( 5 , 0 ) is a D-object. Let i/^i: (^2,1)2) 
(S, D) be defined by sending each χ e S2 to itself and sending each Τ e D2 to 
(0, T ) ; and let 1^2^(-Si,^2) (-5»^) be defined by sending each χ e S2 to itself 
and sending each Τ e Z)2 to (0, T) except 1/̂ 2̂  = (1, U ) . Then one sees that 
and φ2 are D-morphisms with o φ = φ^ ° φ but Φι Φ Φ2^^ contradiction. 
So φ must be onto O. If S2 Φί^ι) is nonempty, consider Φι,Φι'Α^ι^^ι)^ 
({0,1},{7(0,1}}) with Φι = χφ^s^) on ^2,1/^2 = Zs2 on 52 and φιΤ=φ2Τ = 
7(0,1} for all Τ G ̂ 2 . Then since Τ induces a relative dynamics on φ(8ι) (because 
Τ Ε 02 = φ(Οι)), Φι is a D-morphism; 1/̂ 2 is trivially a D-morphism. And 
φ^ο φ = φ^ο φ with ΦιΦφ2^^ contradiction. So φ must also be onto ^2. 
Thus an epi is onto both S and O. 

T o show that an epi in D is a coequalizer, we shall use the diagonal fill-in 
lemma from the previous section. Let φ:(8ι,0ι) (82,02) be a D-morphism, 
let φ = rrii o βι be its epi-equalizer factorization, and let φ = m2 ° 2̂ be its 
coequalizer-mono factorization. Let S' = all D-epis and JÍ = all D-equalizers, 
hence ( ^ , ̂ ) is an image factorization system for D. W e have the commutative 
diagram 

(φ(8ι),φ(Ο0) 

φ 
{S2.D2) 

my 

iS,D) 

[I t is clear that the 
(0(5 J, 0(7)1)).] 

'image object" in the epi-equalizer factorization is 
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N o w consider the pair (61,1712). G S', and ηΐ2 is a D-mono hence a D-
equaHzer (see Section IV. 14), so ηΐ2 e Thus by the diagonal fill-in lemma 
there exists a unique 0:{φ{8ι),φ(Οι)) -^{S,D) with ^ 2 = 0 ^ ° ^ ! and = 
m2 ° g. On the other hand, the pair {e2,m^) is such that 62 is a coequalizer 
and hence an epi (general hierarchy), so 62 e and e JÍ. Thus there exists 
a unique h:{S,D) ^(φ{8ι),φ{0ι)) with = /i o ̂ 2 and ηΐ2 = o h. N o w 
2̂ = ° 1̂ = ^ ° ^ ° 2̂ and = h o β2 = h o g o e^, so g o h = lf^s,D) and 

ho g = l(^(Sj) φφ^) ) (because and 2̂ are epi), whence (5,D) is isomorphic to 
(φ{8,1φ{0,)) in D. 

This shows that the epi-equalizer and coequalizer-mono factorizations in D 
are the same and so in particular an epi is a coequalizer. 

The following simple example shows that a D-coequalizer is not necessarily 
a spHt epi. Let = (a, b} and S2 = {c} . Let Τ be the dynamics on Sj defined by 
T{a,0)=T(b,t) = a, T{b,0)=T{a,t) = b for ί # 0. Then φ:{Ξ,,{Τ})^ 
i^iAhi}) with φ{α) = φφ) = € and φΤ = is clearly epi, hence a 
coequalizer. ^ 

( 5 ΐ , { Γ } ) • ( ^ 2 , { / 5 , } ) 

' ^ 

li φ~^ exists, it has to have 0"^(c) = α or b. But one easily checks that neither 
case would yield a D-morphism. 

So we have, in D, 

split epi => coequalizer <=> epi <=> surjection on 5 and D. 

And, quite different from S, there is only one image factorization in D—epi-
equalizer = coequalizer-mono = surjection-injection. 

F. Dynamics and Equivalence Relations 

77. Compatibility 

DEFINITION . Let Τ be a dynamics on S. Τ is compatible with an equivalence 
relation on 5 if xRy implies 

(i) T(x , t) is defined if and only if T{y, t) is defined, and 
(ii) T{x,t)RT(y,t). 

When dom Τ = S χ U, condition (i) is of course superfluous and the 
compatibility condition reduces to the usual one for the usual definition of 
dynamics (cf. Rosen (1978)). 
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commutes (where X'.S^S' is the quotient map xi-^(x)ij). So χ : ( 5 , { Γ } ) - > 
( S ' , { r } ) sending each χ G S to (x )^ G 5' and sending Τ to Τ is a D-
morphism (in fact, a D-epimorphism). 

19. Bijections and Equivalence Relations 

There are two complementary questions on the connection between 
dynamics on S and equivalence relations on S that can be asked: 

(1) Given a dynamics Τ on S, how can we characterize those equivalence 
relations RonS with which Τ is compatible? 

18. Quotient Dynamics 

If Τ is compatible with the equivalence relation R on 5, then Τ induces a 
dynamics Τ on the set of 'reduced states' S' = S/R. For any {X)R Ε S' and 
i e IR , let Τ ' ( ( χ ) ^ , ί ) = ( T ( x , i ) ) ^ G 5' whenever T ( x , i ) is defined, and leave 
Τ\{χ)κ,ή undefined otherwise. 

T o show that Τ is a well-defined function, we have to show that it is 
independent of the equivalence class representative x. But for xRy, T (x , t) is 
defined if and only if T(y, t) is defined, and T(x, t)RT{y, i) , whence (Γ(χ , t))^ = 
{T(y,t))n. So Τ is indeed independent of the choice of equivalence class 
representatives. Further, condition IV.17(i) actually implies that when xRy, 
α ^ [ Τ ] = aylT^ and b^lT'] = bylT^, so we obtain the well-defined bounds for 
r at ( x ) « as a,., j r ] = α . [ Τ ] and fe^., j r ] = fc,[T]. 

The initial value property Γ ( ( χ ) ^ , 0) = ( T ( x , 0))^^ = ( x ) ^ clearly holds for Γ. 
T o show that Τ is indeed a dynamics, it remains to verify the group property 
of IV.3(iii). Suppose Γ ( ( χ ) ^ , r j = (T(x , ti))^ is defined (thus T(x , is defined, 
in particular); then if Γ(Γ((χ)^ , ί ι ) , ί2) = 7^'((7^(^,íi))/?,Í2) is defined, it is 
equal to (Τ(Γ(χ,ί ι), ί2))κ = (T(xJ, + Í2))A = η { χ ) ^ ^ , + Í2X using the 
group property for T. Similarly, when both Γ '((χ)υ, i j and Τ ' ( (χ) |^ , + Í2) are 
defined, we obtain the same equality. 

The dynamics Τ is called the quotient dynamics on S' induced by T. 

REMARK . Note that the equation T ' ( ( x ) ^ , i ) = (T(x , i ) ) | j states that the 
diagram 

χ X \u 
dom Τ • dom T' 
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(2) Given an equivalence relation R on S, how can we characterize those 
dynamics on S that are compatible with Rl 

The simpler case when one considers bijections ('automorphisms') T: S 5 
instead of dynamics was discussed in Rosen (1978) [in which a bijection 
T'.S^S is defined to be compatible with an equivalence relation Κ on 5 if 
sRs' implies {Ts)R{Ts'y\. It was shown that the set of all equivalence relations 
with which a given bijection T: 5 5 is compatible forms a sublattice of the 
lattice ^(S) of all equivalence relations on S and that the set of all bijections 
compatible with a given equivalence relation forms a submonoid of the group 
^(S) of all bijections on 5; further, the set of all bijections compatible with 
R, and whose inverses are also compatible with R, forms a subgroup of s/{S). 
[Note that when both Τ and are compatible with R, sRs' iff 
(Ts)i^(Ts ') . ] 

Let us first expand on these ideas. 

20. Galois Theory 

DEFINITION. A subset s/ of s^(S) is compatible with a family ^ of equiv
alence relations on 5 if for each Tes/, for each Re^, and for all 5 , s' e S, sRs' 
implies (Ts)R(Ts'). 

We shall now try to answer these two questions: 

(1*) Given a subgroup G of j ^ ( S ) , what are the equivalence relations on 
S with which G is compatible? 

(2*) Given a sublattice L of ^{S), what are the bijections on S such that 
they and their inverses are compatible with L? 

The same argument used to obtain the results of Section IV. 19 can easily be 
generalized to answer these questions. The answer to (1*) is a sublattice of ^(S) 
which contains the equality relation = and the "universal" relation defined 
by sS^s' iff s, s' e S. Since every bijection is compatible with = and S^, it is 
without loss of generality to (and hence we shall) only consider sublattices that 
contain both of these relations. The answer to (2*) is a subgroup of ^ ( S ) . 
In fact, this correspondence between the set of all sublattices of ^(S) and 
the set of all subgroups of j^(S) turns out to be bijective and order (qua 
substructures)-inverting. W e can represent this situation by the following self-
explanatory diagram: 

S/liS) Μ c L, ^ c L. ^ ^ { = , 5 ^ } 

I I I I 
I I I I 
I I I I 
I ! I ! 
1 I t i 
1 5 • G, ^ • G . 5 • sá{S) 
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Further, we can define that an equivalence relation R' on S is conjugate to 
another equivalence relation R on S if there is a bijection T:S ^ S such that 
sR's' if and only if (Ts)R(Ts'\ in which case we shall write R' = Rj. Conjugacy 
is equivalent to the existence of an isomorphism between the collections of 
equivalence classes S/R and S/R\ i.e., there is a bijection between the 
equivalence classes in S/R and S/R' and that corresponding equivalence 
classes contain the same number of 5-elements. 

Let L be a sublattice of ^ ( 5 ) , then we can define a conjugate of L to be 
= {RT'.REL} for some TES/{S). With these definitions we have the 

following interesting lemma. 

LEMMA . If ( L , G ) is a pair of corresponding sublattice-subgroup with 
respect to compatibility, then the conjugate {Lj,T~^GT) is also a pair of 
corresponding sublattice-subgroup with respect to compatibility. 

Proof. Let RE L and U Ε G, then for s, s' Ε 5, 

SRTS' iff (Ts)RiTs') [definition of Κ 

iff {UTs)R{UTs') [ ( / ^ , C / ) e ( L , G ) ] 

iff {TT'UTs)R{TT-'UTs') [ T T - ' = l s ] 

iff {T-'UTS)RT{T-'UTS') [definition of 

Thus T'^UTsind(T-^UTy^ are both compatible with/^τ^. • 

The preceding results bear a striking resemblence to the Galois theory of 
field extensions and automorphism groups! 

27. Discrete Dynamical Systems 

Before going further, let us take a digression in the following direction. 
Suppose instead of considering time as the continuum of real numbers we 
consider time as being composed of a succession of "elementary steps." Then 
we can define a discrete dynamics on a set S to be a mapping Τ from S χ Ζ to S 
such that 

(i) T (x , 0) = X for all χ Ε S, and 
(ii) Γ ( Γ ( χ , í i ) , Í 2 ) = Τ{χ, íi -h Í 2 ) for all χ 6 5 and all í i , Í 2 e Ζ. 

For simplicity we have assumed that dom Τ is all of S χ Ζ instead of a subset 
as in Definition IV.3 of a "continual" dynamics. 

It is clear that for each η G Z, each Τ( · , η) is a bijection from 5 to 5 and that 
T{%n) = Τ( · , 1)". Thus, alternatively, we can define a discrete dynamics to be 
the cyclic subgroup of s/{S) generated by a bijection Τ Ε S^{S\ i.e., a discrete 
dynamics i s < T > = { T " : n G Z } c= s^{S). With this terminology the powers of 
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Τ in <r> become interpretable as instants of logical time, and the transition 
x Γχ, or 7"~^x f-> T"x in general, is an elementary step of the dynamics. 
Further, with appropriate modifications, all the discussions on the category D 
still go through with IR replaced by Ζ and we would have the category of 
discrete dynamical systems instead. 

This situation is, of course, closely related to the specification of a continual 
dynamical system as a one-parameter group of bijections Τ = {T^-.t e U} on a. 
phase space 5. (Let us again restrict to the case when dom Τ = 5 χ IR, i.e., 
when dom 7J = 5 for all t.) For any real number r, we can consider the cyclic 
subgroup generated by T,, then (T,} = {T" = T„,:n G Z} defines a discrete 
dynamics on S. This method of "discretization" is used, for example, in 
obtaining numerical solutions of differential equations. Note, however, that 
this procedure only goes one way: We can obtain a discrete time from a 
continuous time by choosing the size of an elementary step t = r, but starting 
from a discrete dynamics < T > , in general we cannot embed it into a 
continuous one-parameter group of bijections. A fürther discussion of this 
aspect can be found in Rosen (1981). W e shall come back to the role of time in 
dynamics at the end of Section V. 

22. Discrete Dynamics and Equivalence Relations 

N o w let us try to answer the two questions in Section IV. 19 for discrete 
dynamics. 

Given a discrete dynamics < T > = { T " : n 6 Z } , Τe ^(S), since < T > is in 
particular a (cyclic) subgroup of j / ( S ) , the results of Section IV.20 tell us that 
the set of all equivalence relations with which < F > is compatible forms a 
sublattice of ^(S). It is easy to see that < T > is compatible with an equivalence 
relation R on 5 if and only if both Τ and are compatible with R, so we 
only need to check the compatibility of the generator and its inverse with R. 

Since given an equivalence relation R on 5, the set of all bijections on S 
compatible with R and whose inverses are also compatible with R forms a 
subgroup G of j / ( 5 ) , the set of all discrete dynamics on S compatible with R is 
the collection of all cyclic subgroups of G, i.e., the collection of all 
homomorphic images of ( Z , + ) in G. 

23. Partial Answers 

Finally, we shall try to answer, at least partially, the two questions in Sec
tion IV. 19. We shall only consider the dynamics Τ for which dom Τ =^ S χ U. 

Given a dynamics Τ on 5, the collection of translations {7^ : i e [R} is a 
subgroup of .ß/(5); thus the set of all equivalence relations with which Τ is 
compatible is a sublattice of ^(S). 
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The second question is more difficult. Given an equivalence relation R on 5, 
we obtain a subgroup G of ^(S) of all bijections on 5 compatible with R. N o w 
we have to find subgroups of G that are (isomorphic to) continuous one-
parameter groups indexed by U. Whereas for the discrete dynamics case we 
can get the set { { T " : η e / } : Τ e G} quite easily, here there is no trivial way to 
look for homomorphic images of (R, -h) in G. Note, however, that there is at 
least one dynamics compatible with R, namely, the trivial dynamics Is 
= {Is'.teU} c= G. 

V. T O P O L O G I C A L D Y N A M I C S 

That which gives things their suchness 
Cannot be dehmited by things. 
So when we speak of "Hmits" we remained confined 
To Hmited things. 

Chuang Tse 

In this section the study of dynamical systems is continued. First, in 
Subsections A and B, we shall consider the topology on the phase space 
induced by a dynamics; then we shall consider an arbitrary topology on the 
phase space of a dynamics such that the dynamics is a continuous map. The 
development in these sections is adapted from Hájek (1968). Next, via 
topological constructions, the relations between observables and dynamics on 
the same set are analysed in Subsection C. Finally, in Subsection D , the role of 
time in dynamics is discussed. 

A . J-Topology 

Let Τ be a dynamics on a set S. 

DEFINITION . A subset G cz 5 is T-open if for every χ G G there exists an 
ε > Osuch that Τ ( χ , ( - ε , ε ) ) = { Τ ( χ , ί ) : - ε < ί < ε} c= G. 

The collection of F-open sets clearly forms a topology on S with the 
collection { T ( x , ( —ε,ε)):χ e S, ε > 0} as a base. This topology is called the 
T-topology on 5. 

I. Properties 

Some immediate consequences of the definition are: 

(i) A net { x , } is T-convergent to χ in 5 if and only if for large i, x, = 
T(x, ti) with ti 0 in R. This also characterizes T-closed sets. 

(ii) S is T-locally compact. 
(iii) S is T-locally pathwise connected. 
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(iv) A subset of S is T-invariant if and only if it is T-clopen (closed and 
open). So all trajectories of Τ are T-clopen (see Section IV.7). 

(v) S is T-connected if and only if it consists of a single trajectory (or if S is 
empty). 

(vi) If 5 is T-compact, then it consists of a finite set of trajectories. 

LEMMA 1. dom Τ c 5 χ IR is T-open. The map T: dom Τ ^ S is T-

continuous. (The topologies on the various sets are, naturally, the T-topology 
for 5, the usual topology for [R, the product topology for 5 χ IR, and the 
subspace topology for dom Τ c 5 χ IR.) 

Proof. It suffices to show that the inverse image under Τ of the basic 
T-open set G = Τ ( χ , ( - ε , ε ) ) is open in 5 χ IR. N o w if (x\t') e T~\G), then 
Τ(χ ' , ί ' ) = Τ ( χ , ί ) with |ί| < ε. Let 

á = i ( e - | í | ) 

and consider Ε = Τ{χ\(-δ,δ)) χ (ί ' - (5,ί' + δ). Ε is then clearly an open 
neighbourhood of ( x ' , 0 in 5 χ IR with Τ{Ε) = Τ{Τ(χ\ίΙ{-2δ,2δ)) = 
Τ ( Τ ( χ , ί ) , ( | ί | - ε,ε - | ί | ) ) = Τ(χ , ( ί + |ί| - ε,ί - | ί | + ε)) c= Τ ( χ , ( - ε , ε ) ) = G. 
Thus T~^(G) is open in 5 χ IR. • 

LEMMA 2. The T-topology is the finest among topologies on S rendering 
all solutions y^: {a^,b^) S continuous. 

Proof. It follows from Lemma 1 that all y^ are T-continuous. On the 
other hand, let τ be a topology on S in which all y^ are continuous. Let G G τ 
and XE G. Then y^{0) = XE G so T ( x , ( —ε,ε)) = y^{ — e,E) cz G for small 
ε > 0. Thus G is open in the T-topology, which is therefore finer than τ. • 

THEOREM 3. The T-topology is the finest among topologies on S rendering 
T: dom Τ S continuous. • 

C O R O L L A R Y . The bounds a^ and b^, considered as maps from S to ß, are 
T-continuous. 

Proof. Theorem 3 and Lemma IV.6. • 

LEMMA 4. Let A S. Then Τ induces a relative dynamics Τ on A if and 
only if A is T-open in 5. In the positive case, the T'-topology on A coincides 
with the subspace T-topology of A in 5. 

Proof. => If X G ^ , then by the definition of dynamics, T ' (x , t)E A for small 
Since Τ is the restriction of T, we have T ( x , t)E A for small so A is T-

open. 
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IV.7 

Γ induces a relative -< = » - ̂ 4 / 5 Γ-open 
dynamics on / I Lemma 4 

LEMMA 5. Let φ:(2γ,0^) ^(Sj.Dj) be a D-morphism. Then for each 
Τ e D i , (/>: Si ^ 52 is a continuous function where and S2 are endowed with 
the T- and 0 Γ-topology, respectively. 

Proof. It follows from Lemma 2 that (/>:Si -^S2 is continuous if and 
only if φ o y^: R Si 2̂ is continuous for each solution of T. By definition 
of a D-morphism φ{Τ{χ,ή) = φΤ{φχ,ή, hence </>(>';C(0) = ^ΦΧ(0 (where y'^> 
denotes solutions of φΤ\ and α^ ; , [φΤ] < α ^ [ Τ ] < O < / ) ^ [ Τ ] < Ζ^̂ ^̂ ΓΦ^̂ ] 
(see Definition IV.9). Thus dom(0 o y^) = (a^lT^,b^ir^) is an open (in U) 
subset of dom y'φ^ = (αψ^ΙφΤ^, ^φ^\_φΤ^\ and $οφ o y^ is continuous because 
y'φx is. • 

B. Continuous Dynamics 

2. Definition and Consequences 

DEFINITION . Let Τ be a dynamics on S and τ be a topology on S. Γ is a 
continuous dynamics on (S, τ) (or simply "on S" if τ is clear or immaterial) if 

(i) T: dom Τ -> S is continuous, and 
(ii) dom Τ is open in S χ (R 

(where, of course, S χ R has the product topology of τ on S and the usual 
topology on U). 

<= Suppose A is T-open. Let χ e A. For t > 0 define T'(x, t) = T{x, t) if 
T{x,t')eA for all ί ' 6 [ 0 , ί ] . Similarly, for ί < 0. Otherwise leave Τ ' (χ , ί ) 
undefined. Then clearly T' is the relative dynamics on A induced by T. The 
bounds a^lT'^ and b ^ [ T ' ] are determined by 

α ^ [ Γ ] = i n f { ί : ί ' ) G y4 for ί < ί' < 0} , 

ί ) ^ [ Γ ] = sup{r: Τ{χ, t') e A for O < f < ή. 

It is clear that the two topologies on A coincide. • 

Compare IV.7, property (iv), and this lemma: 

(iv) 
A is Γ-invariant -< = = » · A is Γ-clopen 
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Note condition (i) implies that τ is coarser than the T-topology on S [see 
Theorem V. l (3 ) ] . If dom Τ = 5 χ (R, then (ii) is automatically satisfied so a 
continuous dynamics in this case is simply a dynamics that is continuous. 

Conditions (i) and (ii) are equivalent to each of the following: 

(a) If the net { x J converges to χ in S, the net { i J converges to t in IR, and 
T(x , t) is defined, then T(x¿, ί,·) Τ(χ, t). 

(b) The inverse image under Τ of an open set in S is open in S χ IR. 

EXAMPLES. (1) Τ is a continuous dynamics on S with the T-topology 
[Lemma V . l ( l ) ] . 

(2) Τ is a continuous dynamics on S with the discrete topology if and only 
if Τ = Is = the trivial dynamics on S. In fact, the discrete topology is the 
/s-topology on S. 

(3) The trivial dynamics on S is a continuous dynamics on S with any 
topology. 

(4) Τ is a continuous dynamics on S with the indiscrete topology 
( = { 5 , 0 } ) if and only if dom Τ = S χ U. 

(5) (See Section IV.4) The dynamics associated with an autonomous 
differential equation dx/dt = / ( x ) on an open subset S a R*", where / : 5 - > IR'' 
is as in Section IV.4, is a continuous dynamics on S with the usual topology. 
Note that condition (i) corresponds to continuous dependence on initial data. 

LEMMA 1. If Τ is a continuous dynamics on 5, then the bounds and 
are, respectively, upper and lower semicontinuous maps S IR; i.e., 

> lim sup ay and b^ < lim inf by. 

Proof. Let xeS and i e ( a ^ , 0 ] . Then ( x , i ) 6 d o m T , so there is a 
neighbourhood Ν around χ such that for yeN, (y, t) e dom Τ (since dom Τ 
is open in 5 X IR). Hence ί G (α^, 0] for these y, and so t > lim sup ay. N o w take 

y-^x 
t^a,. 

Similarly for • 

C O R O L L A R Y . If T is a continuous dynamics on 5, then for any t e IR, the 
sets {xe S'.a^ < t} and {x e S:t < b^} are open in 5, so that { x e 5 : = 
— CX)} and {xe S:b^= -h oo} are G¿s in 5. • 

LEMMA 2. If Τ is a continuous dynamics on S, then each solution is 
continuous, and each translation is continuous with domain open in S. • 

LEMMA 3. If Τ is a continuous dynamics on (5 ,τ ) and ^ cz 5 is either τ-
open or 7-invariant, then the relative dynamics on A induced by Γ is a 
continuous dynamics on A with the subspace τ-topology. 
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H = H,xYlHiX U^i^S, 
ieJ Í4J 

E = E,C]nE, 
ieJ 

Then Η X Eis open in 5 χ IR and {x,t) e.H χ Ε a Τ ^ G ) cz dom T, hence 
T " ^ ( G ) is open. • 

THEOREM 5. Let 7] be a continuous dynamics on (5,, τ , ) for each i el. 
Then each of the coproduct dynamics (i, 7;) in D is a continuous dynamics 
on S = U Si with the direct sum topology. 

Proof. It follows from Theorem V. l (3) and property V. l ( iv ) that in either 
case A is T-open, so Lemma V. l (4 ) gives this result. • 

REMARK . Lemmata V. 1 (4) and V.2(3) give connections between continuity 
and D-subsystems, Lemma V. l (5) gives connections between continuity and 
D-morphisms. With Theorem V. 1 (3), this says that when (Sj , Di) (S2, D2) 
is a D-morphism, and if 0 T is a continuous dynamics on 2̂ with some 
topology τ, then φ: -> S2 is continuous where has the T-topology and S2 
has the topology τ. Note, however, this does not imply that if Γ is a continuous 
dynamics on ( ^ ι , τ ' ) , then φ'.Ξ^ 52 is continuous with respect to τ ' and the 
(/> T-topology; the implication only goes one way. 

N o w how about the connections between continuity and D-products, D-
coproducts, and quotient dynamics? The answers are given in the next few 
theorems. 

THEOREM 4. For each / e / let 7] be a continuous dynamics on (S,, τ , ) . If the 
product dynamics F = ( 7 ¡ : / G / ) on 5 = Π 5 , exists in D, then Τ is a 
continuous dynamics on (5, τ ) where τ is the product topology of the τ, '5. 

Proof By Theorem IV. 12 there is a finite set J c= 1 such that dom 7] = 
Si X IR for / φ J. 

T o show that Τ is a continuous dynamics on (5, τ ) , it is necessary 
and sufficient to show that the inverse image of a τ-open set G ^ 5 under Τ is 
open in 5 X IR [see condition (b ) ] . It suffices to let G be a subbasic open set 
G = Gk X Tii^k^i for some ke I,Gi, open in 5 .̂ Also, without loss of generality 
assume kφJ. 

Let X = (x¿: i G / ) G 5, ί ε IR, and T(x , t) G G . Then in particular Τ^(χ^, i) G G^ 
so condition (b) applied to F^ yields a v o p e n cz S^, open F^ c= IR, with 
(Xfc, i) G Hfc X Ffc cz Tfc" ^ (Gfc) c dom T¡,. Doing the same thing for each i e J, we 
obtain two families of open sets { / / , : i e J} and { F , : i e J}. Let 
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Let G c= 5' be τ'-open. Since both Τ and χ are continuous, {χ o T)~^{G) a 
dom Τ is open (in the product topology of 5 χ U). But {χ o T)~\G) = 
ix X I R ) ^ ° ( 7 " ) ~ H G ) , S O by the definition of the quotient topology on 
dom r , iTy\G) must be open (in the topology of S' χ ÍR). Thus Τ is a 
continuous dynamics on (S", τ ' ) . • 

C. Observables and Induced Topologies 

3. Observables Revisited 

Let / be an observable on the set of states S, i.e., / : 5 - ^ l R . In the 
construction of the category S, we could have used equivalence classes of 
functions in U^/'^ as observables (see Section III.2) because there the only 
relevant property of / was the equivalence relation Rf it imposed on S. But 
such a definition of S-objects apparently leads to difficulties in some 
categorical constructions, and creates problems in topological considerations. 

Proof. (See Section IV. 13) The proof is immediate; recall that a set G «= S 
is open relative to the direct sum topology if and only if for each i G / , G η S, 
is Tj-open. • 

THEOREM 6. Let Τ be a continuous dynamics on (5 , τ ) and let Τ be 

compatible with an equivalence relation R on S. Let Τ be the quotient 
dynamics induced by Τ on 5' = S/R, and let τ ' be the quotient topology on S'. 
Then Τ is a continuous dynamics on (S\ τ ' ) . 

Proof. (See Section IV. 18) The equivalence relation R on S induces an 
equivalence relation on 5 χ [R via (x, t)R{x\ t') if and only if xRx' and t = t'. 
Then {SxU)/R^S' xU. Also, since the bounds are such that α ( ^ ) ^ [ Τ ' ] = 
(^xV^'] and fc(x)«[T'] = 6 ^ [ T ] , we have dom T/R ^ dom Τ', and the topology 

on dom Τ is in fact the quotient of the topology on dom Τ modulo R. 
N o w consider the commutative diagram where X'.S-^S' is the natural 

projection, and hence χ χ Ι,,^: dom Τ -> dom Τ' = dom T/R is also the corre
sponding natural projection: 

X X \ ^ 
dom Τ • dom T' 

T' 
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But we should recall the comments in Section III.7 and note that for 
f, g eU^ and f ^ g (i.e., Rf = Rg), (5, { / } ) and {S,{g}) are isomorphic in S, 
and because all constructions in a category are only "up to isomorphism," 
these two S-objects (and any constructions with one or the other) are 
"indistinguishable" in S. 

4. Induced Topology 

What properties of / e IR̂  are hidden if we consider ( / ) ^ e U^/ ^ instead? 
We see that since (R is a topological space (with the usual topology), f:S 
can induce a topology on 5, called the f-topology, as follows. A subset of 5 
is f-open (respectively, f-closed) if and only if it is the inverse image under / 
of an open (respectively, closed) subset of (R. The /- topology is the coarsest 
topology on S that renders / continuous. 

For any constant function / [i.e., for / e (0)^ e [R^/'^], the /-topology is the 
indiscrete topology { 0 , S} on S, And in general if the range of / is a finite set, 
then any representative of the class ( / ) ^ induces the same /- topology on S, 
and so there is a unique ( / )^ - topo logy . But if the range of / is infinite, then it is 
possible for f(S) to have limit points, in which case different class repre
sentatives of ( / ) ^ may induce different topologies; hence one has to con
sider / 6 IR̂  and not ( / ) ^ e U^/ ^ in topological considerations. 

Further, since IR is a metric space, a "distance function" on S can be defined 
using / . Namely, for x, y e S, define df{x,y) = \f{x) — f{y)l It is clear that 
df{x,x) = 0, that 0 < df{x,y) = df{y,x) < -foo, and that df satisfies the 
triangle inequahty. But df{x,y) = 0 only means f{x) = f(y) and not neces
sarily X = y,so df is a pseudometric on S, and df is a metric if and only if / is 
injective. Obviously, the /-topology on S is the pseudometric topology 
generated by df, and the quotient /- topology on S/Rf is the induced metric 
topology. Note that if χ G G <^ S where G is /-open and df{x, y) = 0, then 
y e G. 

Historically, the ideas of limit and continuity appeared very early in 
mathematics, notably in geometry, and their role has steadily increased with 
the development of analysis and its applications to the experimental sciences, 
since these ideas are closely related to those of experimental determination and 
approximation. But since most experimental determinations are measurements, 
i.e., determinations of one or more numbers, it is hardly surprising that the 
notions of limit and continuity in mathematics were featured at first only in the 
theory of real numbers and its outgrowths and fields of application. So in a 
sense topology has its roots in the process of measurement (i.e., observations) 
and it is interesting to note that we are now using topology as a tool in the 
study of the fundamentals of measurement and representation of natural 
systems. 
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5. /-Continuity 

DEFINITION . Let 5 be a set, Τ a dynamics on 5, and / e [R^ an observable. 
Then Τ is /-continuous if Τ is a continuous dynamics on S with the /- topology 
(whence the /- topology is coarser than the T-topology). 

6. Compatibility 

Let Τ be a dynamics on S and R an equivalence relation on S. Recall 
(Definition IV. 17) that Τ is compatible with R if xRy implies T(x , t) is defined 
if and only if T{y,t) is defined, and Tixj)RT{y,t); i.e., for all ί G R and for 
all X G dom 7; c= 5, xRy implies y e dom 7; and T,(x)RT,{y). 

In particular, if / G then Τ is compatible with Rf (or simply Τ is 
compatible with/) if for all ί G (R and for all χ G dom 7 ; , / ( x ) = / ( y ) implies 
3 ; G D O M 7 ; a n d / ( 7 ; ( x ) ) = / ( T , ( ) ; ) ) . 

THEOREM 1. Let Τ be a dynamics on S and / G IR^. If Τ is /-continuous, 
then Τ is compatible with / . 

Proo/. If Τ is /-continuous, then each 7; is continuous on dom 7; cz S with 
the subspace /-topology and dom 7; is /-open (see Lemma V.2(2)). This 
means that for all χ G dom T^ and for all β > 0 there exists a (5 > 0 such that 

df{x,y) = \/{x)-/{y)\<ó 

implies ^ G d o m T , and d/(7;(x), T,(>;)) = | / ( T , ( x ) ) - / ( 7 ; ( y ) ) | < ε. N o w let 
x G d o m T , and > ' G 5 be such that / ( x ) = /[y). Then for every ε > 0, 
dM,y) = I / ( x ) - /{y)\ = 0 < δ{εΙ hence 3; G dom T, and d / 7 ; ( x ) , T,{y)) = 
i n m ) - /my))\ < ε; so | /(7 ;(x)) - / (7 ; (y)) | = 0, whence/(7;(x)) = /(Uy)). 
Thus Τ is compatible with / . • 

It is clear that the converse of this theorem is not necessarily true. Further, 
combining Theorems V.2(6) and V.6( l ) , we have the following theorem. 

THEOREM 2. Let Τ be a dynamics on S and / G (R^ and let Τ be / -
continuous. Then the quotient dynamics Τ induced by Τ on the metric space 
(S/jRJ, ) is a continuous dynamics. • 

7. T-Continuity 

DEFINITION . Let Τ be a dynamics on S and / G 1R .̂ Then / is T-continuous 
if / : 5 [R is a continuous function on S with the T-topology (and U with the 
usual topology). 

Since the /-topology is the coarsest topology on S rendering / continuous, 
/ is T-continuous if and only if the T-topology is finer than the /-topology. 
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Trivially, we have 

LEMMA , (i) => (ii) o (iii), where 

(i) Τ is /-continuous. 
(ii) The T-topology is finer than the /-topology. 

(iii) / is T-continuous. • 

D. Time and Dynamics 

8. Time as Real Numbers 

A main area of investigation in this study is to determine how we may 
employ formal dynamical models of natural systems to make spatial and 
temporal predictions about the systems themselves. So let us examine the 
modelling relations involving dynamical systems in some detail. 

The crucial concept in dynamics is, of course, time. The concept of time 
involves two distinct aspects: simultaneity and temporal succession. Both of 
these are intimately involved in our study of dynamical systems. In our 
definition of dynamics, we have tacitly encoded time as a "set of instants" in 
the continuum R, and we have made extensive use of the mathematical 
properties of IR. Simultaneity and temporal succession are implied by the total 
order < on U. The fact that ([R, + ) is an abcHan group is basic to the group 
property of dynamics [see Definition IV.3(iii)]. 

In this chapter when we looked at topological dynamics, the topological 
(metric) properties of U entered in an essential way. This is precisely where the 
difference between a "continual dynamical system" {7J: ί G IR} and a "discrete 
dynamical system" {T":ne Z } lies (cf. Section IV.21). Although (Z , < , -h) is 
also a totally ordered abelian group, time encoded as real numbers has the 
further bonus of the expression of "temporal approximation" over the 
encoding as integers. 

Note, however, that this distinction between IR and Ζ is purely mathemat
ical: that U is "complete" while Ζ has the discrete topology. When it comes 
down to tackling fundamental problems like "What is time?" and "What is a 
universal encoding for time?" it may very well turn out that Ζ suffices. After all, 
since we are only dealing with operational definitions (see Section I I I . l ) , we 
cannot in principle (and obviously in practice as well) measure any duration of 
time that is shorter than the time required for light to pass through a single 
hydrogen atom. So if we take this (very small, but nonetheless positive) 
theoretical lower bound as our elementary step of time, then any period of 
time becomes an integral multiple of this elementary step, and hence it sufliices 
to encode time as Z. But because we need the topological properties of the 
continuum, we shall not dwell on this point and simply encode time as (R. 
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φΤ 

• So 
ώ 

9. Dynamical Time 

Let us revisit the rate equations we considered in Section IV.4 and Exam
ple V.2(5). But this time we shall consider two sets of them: 

dx/dt, = fix), dy/dt,=g{y\ (1) 

where χ is in an open subset of IR'", y is in an open subset 52 of IR" (m and η 
may be different), f\S, IR'", g'.Si -> ff^" are continuous, and ij and tj are 
"times." 

In employing rate equations of the form (1) as encodings of dynamical 
processes in natural systems, the usual point of view is that, roughly, the 
differential increments dx = {dx,,dx2,...,dx^) of the state variables are 
known, and the time differential dt, is known, and / = ( Λ , / ζ , · .,/m) is their 
ratio. We can take a different point of view and say that the principle of 
causality (see Section IV.5) together with the differentials dx essentially serve 
to specify the observables / (see Section IV.2: a "change of state" is an 
observable). Observables / and differentials dx then together define the time 
differential dt,. Similarly, for the other system, g and dy together deñne the 
time differential dí2. One expects that the differentials arising from different 
dynamical systems are in general quite different from one another, and hence 
there is no reason to believe that the time differentials dt, and dí2 are the same, 
i.e., every dynamics defines its own (intrinsic) time. So the problem is how these 
different times are related to a common 'clock time' (extrinsic), which is likely 
to be different from all of them. 

T o tackle this problem let us reconsider equations (1) and this time take 
the point of view that t is simply an arbitrary parameter; for example, we 
could take it to be arc length along the trajectories. Then we can multiply 
the equations by some nonvanishing function α,: 5, IR without changing the 
qualitative properties of the systems. All we do is change the rates at which the 
trajectories are traversed (relative to some fixed extrinsic time scale). In effect, 
we are replacing di, by dt = ai(-)dti. It is through this 'scaling' that we convert 
different intrinsic times to a 'common time' in terms of which dynamical 
predictions can be made. 

So when we define φ e O{{S,,DJ, (52,̂ 2)) via the diagram (Te D^): 

Φ X IR 
dom Τ • dom φΤ 
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T{xj)s ^ φ{Τ{χ.ί)) = φΤ{φχ.ί) 

should really read 

{xj\)i • {Φχ.ί2) 

r ( jc ,r i ) | ^ Φ{Τ{χ,ί,)) = φΤ{φχ,ί2) 

But the scaling correspondence t^^tj is assumed from the very beginning to 
simplify matters. For further discussions on time scaling, see Richardson and 
Rosen (1979) and Rosen (1981). 

V I . T H E C A T E G O R Y OF N A T U R A L S Y S T E M S 

Nature is the realization of the simplest conceivable mathematical ideas. 
Albert Einstein 

A . The Modelling Relation 

1. Introduction 

A natural system, naturally, is a part of the external world; i.e., it is a member 
of the entities outside of us, but it can generate under appropriate conditions 
percepts (sensory impressions) in us. These percepts are then identified with 
specific properties of the natural system itself. 

The adjective natural is used to distinguish the system from a "formal" one, 
which is part of mathematics and hence is a construct of our minds. But then 
one of the primary functions of our minds is to organize percepts and establish 
relations among them, which is a constructive ability. Consequently, creations 
of the mind are imputed to the external world, and hence we have essentially 
obtained formal models of natural systems. Modelling is in fact a fundamental 
quality of the mind. 

the Ιι,ξ! R R that appears is really a map that makes the correspondence 
ti^tj, via the scaHng above to a common time t {dt = ai{x)dti = « 2 ( ^ ) ^ 2 ) ^ 
i.e., the element-chasing diagram 
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The main objective of our study is to estabHsh relations between the classes 
of natural and formal systems. The difficulty and challenge in establishing 
such relations arise from the fact that the two classes are entirely different. A 
natural system is essentially a bunch of Hnked qualities coded by the specific 
percepts that they generate and by the relations that the mind creates to 
organize them. So a natural system is never completely known: We continually 
learn about such a system as our means of observation and our understanding 
grow. A formal system, on the other hand, is a creation of our minds, and so 
we do not learn about a formal system beyond establishing the consequences 
of our definitions through applications of the usual inferential rules of 
mathematical logic, and sometimes modifying the initial definitions. The 
basic task of our study is thus relating experiments to theory. 

2. Description, Simile, and Metaphor 

In Poetry, one of the Six Classics of Chinese literature, it is stated that there 
are three major types of figures of speech: description, simile, and metaphor. 
These three terms, perhaps not too surprisingly, also found their way into the 
domain of science. 

Description in science needs no further explanation; it is the fundamental of 
experimentation, collection of observable data. 

The essential step in our study lies in the exploitation of simile. W e are going 
to force the name of a percept to also be the name of a formal entity, to force 
the name of a linkage between percepts to also be the name of a relation 
between mathematical entities, and to force the various temporal relations 
characteristic of causality in Nature to be synonymous with the dynamical 
structure of mathematical objects. In short, simile likens these dissimilar 
things to one another. 

Another way to characterize what we are trying to do here is via the three 
main stages of Bertrand Russell's "scientific process" mentioned in Section I. 
W e seek to encode natural systems into formal ones consistently in the sense 
that the observed phenomena are accounted for, infer further consequences 
from the mathematical structures, and make predictions about the natural 
systems then verified when appropriately decoded. Diagrammatically, we have 

3b Decoding (p red ic t ion ) 

1 , 3c Observations and 
measurements o f system 
behaviour 

Natural 
system 

Formal 
system 

3a Rules o f 
inference 

2 Encoding (hypothesis) 
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The relation we established between the two preceding systems is the modelling 
relation. We also say that the formal system is a model of the natural system, 
that the latter is a realization of the former, and that the two systems are similes 
of each other, via the encoding and decoding rules in question. Note that the 
idea of simile—the (realization, model) pair—establishes a relation between a 
natural system and a formal system. 

N o w suppose we have two natural systems and N2 encoded into the same 
formal system S via encodings and E2, respectively: 

Then a relation between and N2 can be established depending on the 
"degree of overlap" in S between the "images" Ei(Ni) and £2(^2)· If ^1(^1) = 
^iV^iX then the natural systems Ν γ and Ν 2 share a common model, or are 
analogues of each other. / / £ i ( N i ) c= ^2(^2) . then by restricting to a subsystem 
Ν'2 of ÍV2 we would have £i( iVi) = ^2 (^2)» so we say ^2 contains a subsystem 
analogous to N j . The more general case of F i ( N J P) ^2(^2) 7̂  0 can be 
described as and Ν2 possessing subsystems analogous to each other. Note 
that the relation of analogy is one among natural systems. 

Even more generally, we can consider the situation illustrated in the 
following (self-explanatory) diagram: 

Ν. 

Ε. 

If £ i ( N i ) and £2(^2) are isomorphic (as mathematical objects in an 
appropriate category), then via this (not necessarily unique) one-to-one and 
onto structure-preserving map, we can establish a "dictionary" between the 
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two encodings and hence a relation between iVj and ÍV2, called an extended 
analogy. T o relax the conditons even further, if Ει{Νγ) and £2(^2) share some 
significant general properties in common, a relation can be imputed to and 
N2 themselves; in this case we say that and ÍV2 are metaphors of each other. 
Again, the ideas of extended analogy and metaphor are relations among 
natural systems and can be passed onto subsystems in the same way as in the 
preceding paragraph. 

3. Observables and Linkages 

Having gone through the preceding discussions, we can now simply say that 
a natural system is a set of "qualities" on which different definite relations can 
be imputed. A perceptible quantity of a natural system is obviously what we 
call an observable, and relations among them are linkages. The study of natural 
systems is precisely the specification of its observables, and the character
ization of the manner in which they are linked. Thus it becomes clear that the 
category S we looked at in Section I I I is the appropriate mathematical 
(formal) tool to be used to study (static models o f ) natural systems. 

Next we have to recognize that (almost by definition) natural systems are 
dynamic objects and their changes cause a modification in our percepts. Most 
of the changes in natural systems are of course from their mutual interactions, 
and in fact the changes in our percepts (these are "observables") can be 
considered as the result of interactions with other natural systems. So if an 
interaction between two natural systems causes some change, then the vehicle 
responsible for the change in one is an observable of the other. This leads us to 
the discussions of meters and dynamics, and dynamical systems in general, of 
Section IV. So the category D can be used to model the dynamical aspects of 
natural systems. 

We can express these considerations succinctly in a diagram: 

values 

In this section we shall be concerned with these models of natural systems. 
The categories S and D will be amalgamated into the "category of natural 
systems," denoted by N . 
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Β . The Category Ν 

4. Products of Categories 

From two categories A and Β a new category A χ B , called the product of A 
and B , can be constructed. An object of A χ Β is a pair [A, B\ where A is an A -
object and Β a B-object; a morphism {A,,B,)^\A2,B2) of A Χ B is a pair 
(f,g) of A-morphism f\Ay^^A2 and B-morphism g\B,--^B2\ and the 
composition of two A χ B-morphisms is defined component-wise by 

ifi^Qi) ° ( / i , 6 f i ) = [fi ^ fuOi" 9ί)' 

Functors P: A χ Β ^ A and β: A χ B-^B called projections of the product 
are defined, naturally, by 

P(A,B) = A, P{f.g) = f 

Q(A,B) = B, Q{Lg) = g. 

The triple (A χ Β , Ρ, Q) clearly satisfies the universal property for categorical 
products and is in fact the Cat-product of A and B . 

5. The Category S χ D 

Objects of S X D look like ((S,F),(5 ' ,Z))) and morphisms in S χ D are 
((/>, φ'):as,, Fl) ,{S\ ,D,))^ {{S2, F2),{S'2, D2)\ where φ e Si(S,, F,),{S2, F J ) 
and( / ) 'GD((S; ,Fi) , (Si ,F2)) . 

A general S χ D-object (in particular when 5 / S') would be of interest and 
deserves further study, but for the moment we would concentrate on a 
subcategory Ν of S χ D, where the N-objects are S χ D-objects in which 
5 = 5', i.e., of the form ((S, F) , (S, D)), and for convenience it will be denoted 
simply by (S, F, D). 

Let us define the category Ν more explicitly: 

6. Objects 

An N-object is a triple (5, F, D), where (5, F ) is an S-object and (5, D) a D-
object. 

We shall also consider 5 as a set on which different topologies can be 
defined. In particular, we shall consider the topological spaces (5, τ ) , where τ 
can be the /- topology for any / e F and the T-topology for any Τ e D. Since 
we assume 0 e F (0 denoting the zero function from 5 to IR) and /χ g D (the 
trivial dynamics), S is provided with both the indiscrete and the discrete 
topology [see V.4 and Example V.2(2)]. 
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7. Morphisms 

φemSι,Fι,DMS2.F2.D2)) 

if 0 Ε S{{S,, Λ ) , (52, F^)) and φ e D ( ( S i , D^), (5^, Z)^)), 

i.e., 0 is a mapping of the sets S2, F2, and D2 such that on 
(S, F ) it satisfies the conditions of III.4 and on (5, D) it satisfies the conditions 
of IV.9. Note that a general S χ D-morphism (φ,φ') on N-objects is not 
necessarily an N-morphism, because for the latter φ and φ' have to "agree" on 
the state (phase) space S. So the inclusion functor Ν S χ D is faithful but not 
full. 

W e do not impose any relations for φ on (F , D). So, for example, Τ e may 
be /-continuous for some feF^, but φΤ e D2 is not required to be 
^/-continuous; and we can have Γ compatible with / but 07 not compatible 
with 0/ and so on. 

8. Identity and Composition 

The identity N-morphism \(s,f,d) is clearly the amalgamation of 1^5and 
l(s,D)? i-̂ -5 l(s,F,D) sends each x i — • X G S , / i — • / G F , and Th-^T e D. 

Composition of N-morphisms is defined component-wise and is clearly 
associative with identity 1(s.f,d)-

If 0 : ( 5 i , F i , D i ) - > ( 5 2 , F 2 , Z ) 2 ) is an N-isomorphism, then (S^^Fi) and 
(S2,F2) are S-isomorphic, and {Ξι,Ο^) and (82,02) are D-isomorphic (see 
Sections III.7 and IV. 11). Note that even between N-isomorphic systems, the 
continuity and compatibility properties of the dynamics and observables are 
not necessarily preserved. This is due to the fact that the observable are less 
well behaved and that ^-equivalent observables, which are not necessarily 
topologically equivalent, are S-isomorphic. This apparent shortcoming, 
contrariwise, turns out to be of great interest; some of these "bifurcation 
phenomena" will be discussed at the end of this section. 

C. Constructions in Ν 

9. Products and Coproducts 

Since the phase (state) spaces of the S-product and the D-product of a 
family are the same (both being the Ens-product), we can construct the N -
product simply by "puttin'g the two pieces together." Explicitly, let 
{(Si,Fi,Di): i G / } be a family of N-objects. Then the N-product of this family is 
(5, F, D) , where (S, F ) is the S-product of { (5 , , Fj)} (when the S-product exists) 
and ( S , D ) is the D-product of { ( S , , D ¿ ) } (see Sections III.8 and IV. 12). 

Because of Theorem V.2(4), we see that continuous dynamics are preserved 
by N-products. Also, it is easy to see that if the dynamics 7] is compatible with 
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the equivalence relation on 5,, then if the product dynamics Τ = (Τ^Α e I) 
exists, it is compatible with the product equivalence relation Κ on S (where 
(x¿: i Ε I)R(yi: / Ε I) iff for each / Ε / , χ,Κ/^,). In particular, if 7̂  is /-continuous 
for each i Ε / , then Τ = (Τ^Α Ε I) e D is /-continuous ( / = ( / : / Ε I)) on S, and 
vice versa. 

Similarly, since the phase spaces of the S-coproduct and the D-coproduct 
are the same (both being the Ens-coproduct), the N-coproduct of the family 
{iSi,F¡,Di):iE 1} is ( S , F , D ) , where {S,F) is the S-coproduct of {(5 , - , i^)} and 
(5 ,D) is the D-coproduct of {(5¿,D,.)} (see Sections I I I . l 1 and IV. 13). 

Continuous dynamics are preserved by N-coproducts [see Theorem V.2(5)]. 
Compatibility is also preserved with the coproduct equivalence relation on S 
defined by {i,x)R{j, y) iff i = j and xRiy in 5,. 

10. Monomorphisms and Subobjects 

It is clear that in a product category A χ Β, a morphism (φ ,φ' ) is a mono (an 
equalizer, split mono, . . . ) if and only if φ is mono (an equalizer, split mono, . . . ) 
in A and φ' is mono (an equalizer, split mono, . . . ) in B. The corresponding 
statement, with obvious modifications, also holds for any subcategory of 
A X B. Further, we can have concepts like "partial monos" in A χ Β, where, 
for example, an A-mono in A χ Β is an A χ B-morphism (φ, φ') such that φ 
is an A-mono and φ' is an arbitrary B-morphism. 

Thus, an N-morphism is mono (an equalizer, split mono, . . . ) if it is such 
in both S and D . N o w recall the hierarchies for monomorphisms (see Sec
tions I I I . 13 and IV. 14). 

in S: split mono o equalizer => mono o injection, 

in D : spHt mono => equalizer o mono o injection. 

The hierarchy for N-monomorphisms, taking the "intersection" of the two 
preceding statements, is then 

split mono => equalizer => mono <=> injection (on 5, F, and D). 

So there are three distinct types of monomorphisms in N ; hence there are (at 
least) three possible definitions of an N-subobject. We shall choose to call an 
equalizer-subobject an N-subsystem because an equalizer preserves the 
relevant equivalence class structures on 5 (see Section I I I . 17). 

DEFINITION . Let φ Ε N ( ( 5 I , F j , DJ, (52, F2, D2)). Then (S i , F^, D J is an S-
(respectively, D - , N - ) subsystem of (52, F2, D2) if φ is an S- (respectively, D - , N - ) 
equalizer [where φ is an S-equalizer if (S^, F J (^2,F2) is an S-equalizer 
and φ: ( S i , D i ) -> (52,D2) is an arbitrary D-morphism, and so on] . 

All the different kinds of subsystems in the preceding definition share one 
decisive feature: the passage from a system to a subsystem places limitations 
on the interactive capabilities of the system. So an S-subsystem is limited in the 
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measurements that can be performed on it (to obtain "observables") and hence 
is limited in the kinds of dynamics it can impose on other systems; a D-
subsystem is limited in the kinds of dynamics that can be imposed on it and 
hence is limited in its capability as a meter; and an N-subsystem, which is both 
an S-subsystem and a D-subsystem, can be limited in both ways. 

11. Epimorphisms and Quotient Objects 

The hierarchies for epimorphisms are (see Sections I I I . 14 and IV. 16) 

in S: split epi => coequalizer => epi o surjection, 

in D: split epi => coequalizer o epi o surjection. 

Therefore the hierarchy for N-epimorphisms is 

split epi => coequalizer => epi o surjection (on S, F, and D). 

So there are three distinct types of epimorphisms in N , and hence many 
various definitions of S-, and D-, and N-quotient objects. (Incidentally, a 
quotient object is the dual concept to that of a subobject; a subobject is the 
domain of a monomorphism while a quotient object is the codomain of an 
epimorphism.) 

We emphasize again that even in subobjects and quotient objects, the 
continuity properties of the dynamics are preserved only under special 
circumstances [see Lemma V.2(3) and Theorem V.2(6)]. 

12. Image Factorizations 

Ν has both epi-equalizer and coequalizer-mono factorizations. The two 
factorizations are distinct in general, because of the distinct factorizations in S 
(see Sections I I I . 16 and IV. 16). 

Let us consider first a general category C that has both epi-equalizer and 
coequalizer-mono factorizations. Let ^ = all C-epis and = all C-equalizers. 
Let / : /I -> β in C, let / = m^ o e^: A X ^ Β be its epi-equalizer factoriza
tion, and let / = m2 ^ 2̂ · ̂  ^ ^ be its coequalizer-mono factorization. 
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Then 2̂ is a coequahzer hence an epi (general hierarchy) so 2̂ ̂  and 
m^E JÍ. Thus by the diagonal fill-in lemma (see Section IV, 15) there exists a 
unique/z: 7 ^ X with^i = h « ̂ 2andm2 = m^o /i. Further, since β̂  = / i « ^21^ 
epi, so is h (see Section III . 14); and since m2 = o h \s mono, so is h (see 
Section III . 13). In other words, there is a unique C-morphism h from the 
"coequalizer-mono image" Y to the "epi-equalizer image" X and h is both epi 
and mono (not necessarily an isomorphism, however). 

Coming back to our category N , we see that for any φ:{Ξ,,Ρ,,ϋγ) ^ 
(S2,F2,D2) , we have the commutative diagram 

coequalizer 

( 5 , F , D ) 

where \¡/ is both N-epi and N-mono but not necessarily an N-isomorphism. 
φ is, however, a D-isomorphism from (S,D) to {φ{3,\φ{0,)) (see Sec
tion IV.16). 

D. Bifurcations 

13. Multiple Descriptions 

The N-object (5, F, D) contains many different mathematical descriptions 
of the same system. There are many interesting questions about their con
nections one can ask: How do the descriptions of S obtained from one 
set of observables { / Ι , / ζ , . - . , / π } compare with those from another set 
{Qi^Qi^'-'^GmV- How can one combine these descriptions to obtain a more 
comprehensive picture of 5? T o what extent does a knowledge that two states 
SI and 52 appear "close" under the pseudometric on S induced by 
{ / I , / 2 , . . . , / „ } imply that these same states appear close with respect to 
{gi^Qi^'-'^Gm}'^' How does a dynamics Τ appear when viewed through an 
observable / ? And, vice versa, how does an observable appear after the 
passage of a dynamical process? 

These questions are intimately related to the notions of stability and 
bifurcation (Thom, 1975). However, as we shall now see, questions of this type 
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devolve once again to the notion of linkage (see Section III.9) and thence back 
to the essence of the modelling relation itself. Let us then take up the question 
of linkage of observables in more detail. 

14. Linkage Reconsidered: Equations of State 

Let us begin with the simplest case in which we have a set of states S with 
two observables f,g e U^. We can represent this by a diagram 

This is yet another type of the diagrams we discussed in Section VL2. Here a 
single natural system is encoded into two formal systems, thereby establishing 
a correspondence between the two latter systems. 

The linkage between two observables is, as we indicated in Section ΙΠ.9, 
given by how much we learn about g{s) when / ( s ) is known, and conversely. In 
other words, linkage between / and g is manifested by the degree of 
correspondence between the two formal systems (IR and U) encoding S. 

The simplest possible situation is when Rf = Rg. Then the value / ( s ) of / at 
any s e 5 completely determines g(s) and vice versa. This means there is 
actually an (Ens-) isomorphism Ψ between / ( s ) and g{s) [i.e., (5, { / } ) is 
isomorphic to (5, {g}) in S ] and we have for every se S 

Diagrammatically, 

Ψ ( / ( 5 ) ) = g(s) 

f(s) = ^-\g{s)). 

f(S) 

(1) 

Alternatively, when Rf = Rg, we have Rfg = Rf = Rg and the image of S/Rfg 
under the embedding {s)fg\-^ {{s)f,{s)g) is simply a "graph" in S/Rf χ S/Rg 
i = f(S) X g(S)), whose equation is given by (1). 

The next situation we can consider is when Rf refines Rg (i.e., when g is 
totally linked to / ) . In this case each class in S/Rg is a union of classes in S/Rf, 
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Geometrically, this means that the image of S/Rfg in /(S) χ g{S) is a graph 
satisfying a relation, for all 5 e 5 

Φ ( / ( 5 ) , ^ ( 5 ) ) = 0, (2) 

in which / ( s ) plays the role of an independent variable; i.e., Eq. (2) can be 
solved for ^ as a single-valued function of / (e.g., when Φ is differentiable, 

/ 0) but not conversely (for example, ^Φ/^g = 0). 
More generally, if g is partially linked to / , i.e., when the value / ( 5 ) of / 

partially constrains (imposes "selection rules" on) the possible values of g{s\ 
then the image of S/Rf gin f{S) χ ^(5) still satisfies a (nontrivial) relation of the 
form (2), except now we can solve for neither / nor as a single-valued function 
of the other. Here there is no mapping between encodings in either direction 
and so neither of them can be regarded as contained in the other. 

Finally, when / and g are unlinked, the map S/Rfg^ f{S) χ ^(5) is 
onto, and there is no meaningful relation of the form (2). 

Thus we see that a linkage between two observables / and g can be 
expressed as a relation of the form (2), which characterizes some subset of 
/(S) X g(S), Such a relation is called an equation of state for the system. It 
is a relation between encodings of a natural system, expressing the degree 
to which the encodings are linked. An equation of state is not an observable 
but rather represents the encoding of system laws; i.e., it is a rule of in
ference corresponding to a system behaviour. 

The preceding discussion can easily be generalized to two families of 
observables F = { / ι ,Λ, . . · , / , ,} and G = {ofi,É^2.---.É/m} on 5. Any linkages 
between the two families (and in fact within the families) can be expressed by an 
equation of state of the form 

Φ ( Λ ( 5 ) , . . . , / „ ( 5 ) , ^ ΐ ( 5 ) , . . . , ^ ^ 5 ) ) = 0. (3) 

The character of Φ (e.g., the vanishing of some of its derivatives) will express 
the manner in which the observables are linked. Categorically, this idea is 

and knowing the value / ( s ) completely determines g{sX but not vice versa in 
general. Here Rfg = Rf and there is a noninvertible (many-to-one) mapping 
Ψ: f(S)^g{S). In other words, the ö'-encoding may be reduced to the / -
encoding, but not conversely. 
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( 5 , F ) \φ ( 5 , G ) 

(S^FU G) 

and the linkage is reflected in the nature of the S-morphism φ. 

15. Stable Points 

In the preceding section we considered those relationships among ob
servables f,g,... based on the concept of linkage, which depends only on the 
equivalence classes of the relations Rf, Rg,.... We considered the manner in 
which a "state transition" s-^ s' that was undetectable by / (i.e., f{s) = f (s')) 
could be detected by g (i.e., g(s) φ g{s')). 

Next, we shall try to answer this question: If s is "close" to s' under (the 
pseudometric /-topology induced by) / , when will s also be close to s' under ^? 
Thus we are considering the extent to which a state transition 5 - ^ 5 ' that is 
"almost" undetectable by / (i.e., | / ( 5 ) - / ( 5 ' ) | is small) is likewise almost 
undetectable by g (i.e., \g{s) - g{^)\ is small). 

DEFINITION . Let / , g be observables on S and d^, dg be the correspond
ing induced pseudometrics (see Section V.4). The state s G 5 is a stable point 
of g with respect to f if for every ε > 0 there exists a á > 0 such that for 
s' G S, dj-(s,s') = 1/(5) - / ( s ' ) | < δ implies dg(s,s') = \g{s) - g(s')\ < ε. 

The definition is equivalent to each of the following: 

(i) the identity map of the set S from (S,df) to (S,dg) is continuous at s; 
(ii) the /-open neighbourhood system of s refines the ^-open neighbour

hood system of 5; 
(iii) (roughly) every state /-close around 5 is also ^f-close around s. 

The following is clear: 

LEMMA , (a) If 5 G S is a stable point of g with respect to / then (s)f cz (s)g. 
(b) If 5 G S is a stable point of g with respect to / and s' e (s)f, then s' is also 

a stable point of g with respect to / . • 

expressed in the product diagram 

( 5 x 5 . f x G) 
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THEOREM . The set of stable points of g with respect to / is an /-open 
subset of S. • 

16. Bifurcation Set 

DEFINITION . The complement of the set of stable points of g with respect 
to / is the bifurcation set of g with respect to / . 

Intuitively, near a bifurcation point of g with respect to / , the proximity of 
two states s and s' of S as viewed by the observable / does not imply their 
proximity as viewed by g. In other words, the bifurcation set is the set of states 
at which the ^-description does not agree with the /-description in their 
metrical aspects, i.e., the two descriptions convey essentially different 
information. 

It follows from Theorem V I . 15 that the bifurcation set of g with respect to / 
is an /-closed subset of S. Also, it is clear that the bifurcation set of g with 
respect to / is empty if and only if the /- topology is finer than the gf-topology 
on S, in which case Rf refines Rg. 

17. Equivalence of Observables 

In the previous discussion, we can interchange the roles of / and g and 
obtain the opposite concept of stable and bifurcation points of / with respect 
to g. These are in general quite different from those obtained from g with res
pect to / . Thus, given a pair of observables, we obtain two distinct notions 
of stability and bifurcation, depending on which description is chosen as the 
reference. 

Let us consider the case when / and g are two observables on S such that the 
bifurcation sets of / with respect to g and of g with respect to / are both empty. 
Then \s:{S,df)-^{S,dg) is a homeomorphism and df and dg are equivalent 
pseudometrics, i.e., / and g induce the same topology on S. Under these 
circumstances it is appropriate to say that / and g are topologically equivalent 
(as opposed to algebraically equivalent f ^ g, when Rf = Rg). Note that by 
Lemma V I . 15, topological equivalence implies algebraic equivalence; but 
not conversely. Stated another way, we have the following theorem. 

THEOREM . If two observables induce the same topology on the set of 
states, then they are totally linked to each other. • 

18. Bifurcation and Continuity 

Let us suppose that the two observables fgonS are related by an equation 
of state of the form 

Φ ( / ( 5 ) , 3 ( 5 ) ) = 0 (1) 
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for ail se S. W e shall consider how the concepts of stability and bifurcation are 
reflected in some (if any) properties of the function Φ: f{S) χ g{S) aU^ -^U, 

Let 5 6 5 and let [ / be a neighbourhood of f{s) in IR. If f~^{U) is a small 
neighbourhood of g{s) whenever U is small, then 5 is a stable point of g with 
respect to / . The relation of o f~^{^) to U is clearly another way of 
expressing the equation of state (1) (around the point ( / ( s ) , g(s))). It is also clear 
that s being a stable point of g with respect to / is equivalent to the continuity 
of the second argument of Φ with respect to the first at {f{s\g{s)). Dually, a 
stable point of / with respect to g occurs at a point of continuity of the first 
argument of Φ with respect to the second. In other words, bifurcation depends 
on, and is a consequence of, the discontinuity of the linkage relation between 
observables, when the properties of distinct encodings become logically 
independent. 

Again, the preceding can be generalized to linkages among more than two 
observables. 

19. Incompatibility 

We saw in Section IV. 18 that when a dynamics Τ on a set S is compatible 
with an equivalence relation RonS,T induces a quotient dynamics on the set 
of reduced states S/R. In this section we shall investigate what happens when a 
dynamics Τ is not compatible with an equivalence relation R, in the special 
case when R = Rp where F is a family of observables on S. 

If Τ is not compatible with Rp, then there are states s,s'eS for which sRps' 
but which for some teUT^s and T^s' are not K^-related. That is, Τ spUts 
equivalence classes oi Rp. Putting it another way, the two indistinguishable 
states 5 and s' (under F ) have now differentiated through the action of the 
dynamics F, and that this diff'erentiation is visible using the observables in F. 
(The term "dilTerentiation" is used deliberately here to suggest the connection 
of this with biological diff'erentiation. See Section VII.5.) 

From the viewpoint of an observer equipped with meters for observables in 
F, the states s and s' appeared to be the same. But through the course of the 
dynamics Τ the observer detects two different states T^s and 7^5'. It would 
appear that the same initial state under the same conditions has given rise to 
two distinct states, a contradiction to causality. The problem here is of course 
that one usually assumes that one has a complete set of observables F for the 
description of S (i.e., S/Rp = S, or Rp is the equality relation). The standard 
way out is to pull in statistics and to observe many copies of {s)^^ under the 
passage of T. The relative frequencies of the resulting states (7^^')/?^ [where 
s' e (s)ji^.~] are then associated with transition probabilities from s to T^s'. In 
other words, the incompatibility of Τ with R is usually interpreted in stochas
tic terms. 
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T' 

S/Rf 

the study of stability and bifurcation can be formulated in the category Ν as 
the "approximate commutativity" of this diagram. 

Finally, there is an interesting possibility that a state SG S can be a stable 
point of f o Tf with respect to / for all t less than a critical time t^, and then for 
t > tc,s becomes a bifurcation point of / o τ; with respect to / . In other words, 
at f = we have a catastrophe (in the sense of Thom, 1975). Alternatively we 
can consider ί e R as an order parameter and at ί = î . we have a change of 
scheme from an old structure to a new structure through an instability. This 

One can (rather boldly) make the suggestion that all processes occurring in 
nature are deterministic, and the apparent stochasticity is simply a con
sequence of employing an incomplete description as if it were complete. So 
one does not need statistical tools if one has a complete description of the 
system. But that is a rather big if because we are limited in our means of 
observation, measurement, and understanding, and to obtain a complete 
description of every natural system is really to find the philosopher's stone! 
Thus statistics plays a role in science as a matter of necessity. Further 
discussions of the interplay between causality and chance can be found in 
Böhm (1957) and in Belinfante (1973) on the theory of "hidden variables." 

20, Stability and Bifurcation, Again 

We just considered the situation when a change of state s-^ s' that is 
undetectable by an observable / becomes detectable by the observable g = 
f ^ Tf. This of course is again intimately related to the concept of linkage. 
After all, given an observable / and a dynamics Τ on S, for each teUf o is 
an observable on S. T o say that Τ is compatible with Rf (i.e., / ) simply means 
that Rf refines each ^ ^ „ 7 - ^ or that each 7 ° 7; is totally linked to / . 

With this in mind, the next natural question to ask is: If s is close to 5' under 
/ , when will s also be close to s' under / after the action of a dynamics T ? This 
problem can then clearly be studied by reducing to consider stable and 
bifurcation points of / o 7J with respect to / . And the results from the previous 
sections can be appropriately modified and used. 

Since the compatibility of Τ with / is equivalent to the commutativity of the 
following diagram (see the remark of Section IV. 18). 

dom Τ • dom T' 
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area is a further topic of investigation and we shall not deal with it here. A 
good set of reference is the Springer Series in Synergetics, especially the 
introductory Volume 1 (Haken, 1978) and Volume 4 (Giittinger and 
Eikemeier, eds., 1979), Structural Stability in Physics. 

V I I . B I O L O G I C A L I M P L I C A T I O N S 

Any particular or isolated biological phenomenon or group of phenomena admits of 
necessity an explanation in terms of a mathematical model. 

Nicolas Rashevsky 

We come now to the final subject of our study. W e want to show how the 
mathematical formalism of categorical system theory we developed may be 
applied in the analysis of various biological problems. 

A . Development and Senescence 

1. The Nature of Biology 

Biology is the science of life and of the living, and of the multitude of 
interactions among living systems. The term life encompasses an immense set 
of phenomena; thus biology seems to sit at the rendezvous of all other 
sciences. The physicist Yang Chen-Ning once said that physics and mathe
matics are like two leaves sharing the same petiole, that they do not overlap 
but rather have the same blood in their veins. We can generalize the idea and 
say that science is like a compound leaf; each leaflet is one branch of science 
sharing the same rachis, which represents biology, and that biology is a unique 
science in the sense that this compound leaf is itself a biological object, a living 
system. 

What, then, is a living system and what does it do? Many scientists coming 
from diverse backgrounds, when engaged in the search for general principles 
to integrate our understanding of the phenomena of life, have placed major 
emphasis on the notion of life as viewed from the standpoint of their own 
specialties. This is a classic example of a reductionist's view of the world. 
However, although the various theories of living systems difl"er greatly in their 
concepts and definitions of basic terms, they seem to share a common goal: to 
organize the findings (observations!) in some or all of biology into a single 
conceptual structure. 

2. Developmental Biology 

The development, the progressive production of the phenotypic character
istics, of organisms is a mysterious process (Berrill and Karp, 1976; Trinkaus, 
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1969). How can a single cell, the zygote, change itself into an adult containing 
millions of cells organized in a complex way? The fact that all the information 
necessary to produce the adult is contained in the very first cell and that the 
environment simply provides energy and materials increases the diflSculty of 
the problem. The zygote of a given species always becomes an adult of that 
species and never that of another, whatever its environment. Growth mainly 
occurs through a continuous process of cell division, but how does dif
ferentiation that occurs during growth come about? Since all the cells contain 
the same genetic instructions, how do they come to differ from one another 
structurally and functionally and develop into elaborate spatial patterns? 
How does a developing embryo repair damages that may occur accidentally? 
Surely precise mechanisms for control and adaptation are involved—but 
howl Perhaps the solution to these complex problems of developmental 
biology lies not in modelling the phenomena but rather in abstract formal 
treatments like automata theory (see, for example, Arbib, 1972) and our 
categorical system theory. 

Developmental biology has become an immense field whose boundaries are 
difficult to define (Thompson, 1942). The focus has been and remains on the 
embryo—on the gradual emergence of form and structure. The essence of 
embryonic development is change—transition from one state to another 
(dynamics!). Embryos are a "fleeting state," and development is an expression 
of the irreversible flow of biological events along the axis of time. 

The transformation of an organism or its component cells from one state to 
another can also be identified in a variety of biological processes not 
specifically related to embryonic development. Of prime interest among them 
are aging, regeneration, and malignancy, each of which is characterized by a 
shift, either gradually or suddenly (catastrophically?), in cellular activities. 
These processes also fall into the general domain of development biology. 

The article by Crick (1977) is an enlightening one about our ignorance— 
what we do not know—of development biology. 

3. Aging 

The outward signs (i.e., observables) of aging are obvious; yet the 
underlying bases for the deteriorative processes that occur in all living 
organisms are very poorly understood. In fact, the very definition of the term 
aging is far from clear; it may well be that aging is a primitive of a logical theory 
and hence is left as an undefined term. Primitives receive no definitions except 
those given to them implicitly by their presence in the general axioms of the 
theory. In our study, the terms system, state, and observable are primitives (see 
Section I I I . l ) . But can we define what aging is in our framework of categor
ical system theory? 
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There is no single observable that can be called aging, although many basic 
observations have been made of age-related changes [i.e., those changes 
correlated with increasing (chronological) age]. In fact, almost every ob
servable monotone function of chronological age has been used as a measure 
of biological age. [Note this statement itself assumes that somehow biological 
age is comparable to chronological age, i.e., time. So just as in dynamical 
systems (see Section V.9), we are assuming the existence of a "scaling factor" 
between intrinsic age and extrinsic time.] For example, increasing functions 
from blood pressure to amount of lipofucsin in cells, and decreasing functions 
like organ activity, nerve conduction velocity, muscle power, etc., have all been 
used as age indicators. One of the most important tasks of aging research is to 
determine which of these changes are primary events that could be directly 
responsible for survival and which are either secondary manifestations or 
independent processes not responsible for causing age-related death. 

Some investigators believe that aging, whether caused by intrinsic or 
extrinsic factors, is a general property of all normal cells. Others have 
proposed that a limited population of cells controls the course of aging 
throughout the (multicellular) organism. Above all, perhaps it should be 
emphasized that aging and growth are inseparable. Growth as such may be 
analyzed in terms of cell multiplication, cell enlargement, cell replacement, 
and other features such as accumulation of extracellular substance. Yet the 
phenomenon itself, including factors that determine both the rates of growth 
and the limits of growth, is not understood. Aging is essentially an extension of 
the growth process into negative values; i.e., the process is seen as increase as 
long as cell multiplication exceeds cell death and as decrease when cell death 
exceeds cell multiplication. The process is continuous throughout life, 
beginning in early development. When the underlying growth-controlling 
properties become better understood, so will the phenomena of aging and 
death. 

Let us now return to our formal treatment. 

4. A Partial Order in Ν 

DEFINITION . Let ( S i , F i , D i ) and (S2 ,F2 ,D2) be N-objects. Then 
( 5 i , F i , D i ) < ( S 2 , F 2 , D 2 ) i f 

(i) there is an N -mono 0: (5 i , F^, D i ) (^2, F2, D2); 
(ii) -Si, FJ , and Dj are finite sets. 

Note first that if ( S i , F i , D i ) < (S2 ,F2,D2) , then(Si ,F i ) < (52,F2) in S (see 
Section I I I . 18). Also, since is a finite set, for each / e F i / ( S ' i ) is a finite 
subset of U; hence any representative of the class ( / ) ^ induces the same / -
topology on 5^, i.e., there is a unique ( / )^- topology on Si (see Section V.4). 
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It is clear that < on the finite N-objects [i.e., on (5, F, D\ where S, F, and D 
are finite sets] is reflexive and that < is transitive. It is also clear, using a 
similar argument as in Section I I I . 18, that if {S^,F^,D^) < (52 ,^2,^2) and 
{Sj.Fi.Dj) < {Si,Fi,Di) then the N-monos involved are in fact N-isomor-
phisms. So < is antisymmetric (up to isomorphism, as usual). Therefore < is a 
partial order on (the isomorphism classes o f ) the finite N-objects. 

Let (5 i , F l , D i ) < (^2, F2, D2) . Since the phase space is finite, each Τ e Di 
has dom Τ = χ U (see Corollary 2 in Section IV.6); i.e., for every xe 
α ^ [ Τ ] = - 0 0 and / ? ^ [ T ] = + 0 0 . But then from αφ^ΙφΤ^ < α^ΐτ] < O < 
bxíT] < bφ^lφT'], we have α^^[( / )Τ] = . - O O and Βφ^ΙφΤ^ = + O O as well, 
i.e., dom φΤ = S2 x U.So here we are simply deahng with the usual concept of 
dynamics. Since dom Τ = Si χ U>-^ S2 x U = dom φΤ,Τ can be considered 
as the relative dynamics on Si induced by the dynamics φΤ on ^2; 
alternatively, φ Τ can be considered as an extension of the dynamics T. 

5. Growth and Aging as a Partial Order 

What does this partial order < in Ν have to do with our present topic on 
development and senescence? Since (S^, F i , D J < (52, F2, D2) in Ν implies in 
particular that (5 ' i ,F i ) < (S2,F2) in S, we can include the discussions from 
Section I I I . 18. Let us see what we have. 

With an N-mono </>:(5i ,Fi ,Di) < (52 ,F2,D2) , the possibility that φ is not 
onto models growth. If S2 ^ Φ(Sι) is not empty, then more elements (states) 
have appeared in the second system, an increase in size. If F2 ^ φ{Ρι) is 
nonempty, then there are more observables in the second system, an increase 
in complexity. If D2 (/>(Di) is nonempty, then more dynamics can be imposed 
on the second system, an increase in interactive ability. Collectively, the 
appearance of these new modes of structure, organization, and behaviour falls 
into the description of the sometimes puzzling biodynamical phenomenon 
termed emergence. 

When g e F2 ^ Φ(Ρι) and s, s' e S^ are such that sRp^s' but g{φs) φ g((\>s'\ 
indistinguishable states in S^ are now separated in 52 because of an increase in 
complexity, an alternate description. When Τ e Di is compatible with R^^ but 
0 T is not compatible with some geF2 (see Section V I . 19), we have the case 
that indistinguishable states in 5i become separated in S2 because of an 
interaction through an additional dynamics. Both of these cases indicate the 
presence of differentiation going from (5 i , F i , D j ) to (52, F2, D2). 

Suppose now s, 5' e S^ and / G Fi are such that / ( s ) φ f{s') yet {φί){φ5) = 
{Φί){φ^'\ then distinct states become "the same." Also, when a dynamics is not 
compatible with an equivalence relation, different equivalence classes may 
appear to "fuse" together in the course of the dynamical process. These serve 
as models for biological integration when interpreted "positively," and for 
decay (loss of information) when interpreted "negatively." 
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We mentioned (Section V.9) that the 1^ in the map φ χ l ^ ido rnT-^ 
dom φΤ is a simplified version of the time scaling in which we have made the 
identification ii Í2- Suppose instead of 1r we use a monotone increasing 
function a: ii Í2 from (R to IR, then the map T\-^ </>rwith thecommutativity 
condition φΤ{φχ, α(ή) = φ{Τ{χ, ή) would have incorporated into it a "speed
ing up" or "slowing down" of the dynamics depending on whether á > 1 or 
á < 1. This again models growth and decay. 

When a change of continuity properties occurs going from ( 5 i , F i , D i ) to 
(52,F2,Z)2)—for example, when T i s /-continuous ( F e D^, / e F^) but (/>Fis 
not ^/-continuous, or when the Hnkage between φ/ and φρ is different from 
that between / and g {f,geF,)—it could be interpreted as a change of 
biological structures and functions. This kind of apparently discontinuous 
change in biological systems again falls into the area of "emergence." The 
generation of emergent novelties is highly characteristic of biological systems, 
and in our formalism of categorical system theory it is a natural consequence 
of the definition of < . 

With all the preceding in mind, we can now make a formal definition of 
aging and growth: 

DEFINITION . Let ( 5 i , F i , D i ) and (S2,F2 ,Z)2) be finite natural systems. 
Then ( 5 i , F i , D i ) is younger than (52 ,F2 ,D2) (and the latter is older than the 
former) if {S,,F,,D,) < (S'2,F2,Z)2); i.e., aging is defined as the partial order 
< on the finite natural systems. 

6. The Directionality of Aging 

There is probably no subject that so deeply interests human beings as that of 
the duration of human life. More than most sciences, gerontology is haunted 
by primordial myths and fears. This concern is extremely ancient. Somehow 
people always seem to believe that there are magical ways of reversing, or at 
least postponing (preferably forever), the process of aging. There are 
numerous examples in history of searches for these magical ways: Xu Fu was 
sent by the Chinese emperor in the third century B.C . to look for the Fairy 
Islands (incidentally, this is supposed to be the origin of Japan); Faust sold his 
soul to the Devil in exchange for a promise of immortality, knowledge, and 
power; and the Spanish conquistador Ponce de León searched for the 
Fountain of Youth in the sixteenth century (but was shot down by native 
arrows in Florida). 

The goals of modern aging research are considerably more modest. W e are 
still at the stage where we are trying to understand aging. In fact, the more we 
know about aging, the more irreversible a process it seems to be. That is why 
ideas from irreversible thermodynamics and dissipative systems are used to 
model aging (see, for example, Richardson, 1980). The irreversibility of aging is 
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captured in Definition VII.5. If (Si , F i , D i ) < (S2, F2, D2) then of course in 
general we do not have (^2, F2,1)2) < (Si, F i , DJ. Indeed, if the latter holds we 
would have (Si, F i , D i ) ^ (S2, F2 ,D2) in N , in which case the two systems are 
of the "same age." So the partial order < gives a (uni)directionality of aging 
and growth. 

Note, however, that although in general an N-mono does not split (see 
Section VI.IO)—this is what we need for ( / ) : (Si ,Fi ,Z)i) ^ (S2 ,F2,D2) to 
be reversible—it is possible that there is a subsystem (S,F,Z)) of 
(0(Si),^(Fi),</>(£)i)) c (S2 ,F2 ,D2) on which exists and is an N-mono. In 
other words, aging results from properties and relations of whole systems, and 
it does not forbid the possibility that one or more of the component 
subsystems give opposite contributions. Aging is a collective (cooperative) 
phenomenon of many processes, some of which may appear to defy aging. 

B. The Concept of the Organism 

7. Organism 

When one thinks of collective phenomena in which the discrete constitutive 
individuals are modified in their behaviour through interactions among one 
another to fit into the patterns of a larger collective set, and the whole is more 
than and different from a simple addition of its parts, living organisms would 
seem to be the ideal example. Yet the concept of the organism has resisted all 
attempts of definition. Partly it is because organisms are complex, which 
means that they admit many different kinds of descriptions. The character
istics of any of the many possible descriptions made of an organism provide a 
possible way of defining the organism. But many of these descriptions look 
contradictory and hence add to the intrinsic difficulty of the task. The various 
academic fields that study organisms approach their tasks quite differently. 
None has a complete picture, and communication among these disciplines is 
often poor. Gross anatomy concerns structure; general physiology primarily 
deals with matter-energy processing; and endocrinology, neurophysiology, 
genetics, and psychology chieffy deal with information processing. On the 
other hand, since these different descriptions represent different kinds of 
abstractions from real organisms, each can tell us something that the others 
cannot. Perhaps the most important problem lies in trying to combine these 
divergent views of the organism into a more comprehensive picture. 
(Collective description of a collective phenomenon?) 

The conventional (reductionistic) view of the organism is that of a physical-
chemical system whose behaviour is to be deduced from its structures 
according to the laws of physics and chemistry. Life, according to this view, is a 
potentially self-perpetuating open system of linked organic reactions. 
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I ^ ^ ^7 

Φki 
and if i > j in I then there is no N-morphism in L from L, to Lp i.e., 
L{Li,Lj) = 0 for i > j . 

It follows from (2) that for each i e / , {φα = 1^.} = L(L , - ,L , ) . Thus L is a 
subcategory of Ν and the set of L-objects is totally ordered by < . In fact, one 
easily sees that L is isomorphic (in Cat) to the totally ordered set ( / , < ) 
considered as a category [see Example 11.4(6)]. 

DEFINITION . An organism is a natural system that is (a realization of ) L for 
an appropriately chosen family { L , } of N-objects and an appropriately chosen 
collection {φ^} of N-monos satisfying the definition of L. 

Considering the results we have from the discussions on aging, it is quite 
reasonable to make the preceding definition of an organism from the 
standpoint of categorical system theory. The totally ordered set ( / , < ) is an 
index of age and the order < on L is the process of aging. The instant / = 0 can 

catalyzed stepwise and almost isothermally by complex and specific organic 
catalysts that are themselves produced by the system. Another view of the 
organism is from that of organic behaviour, in the context of a relational 
biology, as conceived originally by Nicolas Rashevsky (see Rashevsky, 1960). 
On the integrative aspects of behaviour, it was Rashevsky's idea that the 
organisms are recognized as such because we can observe homologies in their 
behaviours, regardless of the physical structures through which these 
observations are made. Thus all organisms manifest the same set of basic and 
ubiquitous biological functions, and through this manifestation organisms 
could be mapped on one another in such a way as to preserve these basic 
relations. This idea led to the formulation of Rashevsky's principle of 
biotopological mappings and Robert Rosen's (categorical) ( M , R)-systems 
(Rosen, 1972). On the adaptive and predictive character of organic behaviour, 
one is led to the classical (optimal) control theory (Rosen, 1980), and Rosen's 
theory of anticipatory systems (Rosen, 1985). 

The following is a description of the developmental processes of an 
organism from a categorical standpoint. 

DEFINITION . Let L consist of 

(1) a collection {L,- = (S,,f;, A ) : i 6 / = [ 0 , 1 ] } of N-objects such that for 
/ < ; in / , Li < Lj in N . (So in particular the L,'s are 'finite' N-objects.) 

(2) for each pair i, j el with / < ) , a hom set L(L¿, Lj) containing a single N -
mono </>j,-: L, -> Ly, such that for i < j < kin / , φ^^j o φ^. = φ^. 

Φμ Φ/<) 
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be considered as the moment of conception of an organism (when life begins) 
and the instant / = 1 is death. The developmental processes of the organism 
are reflected in the systems (5,,/\,Di), the morphisms φβ, and in particular in 
the evolution of the systems as the index / e 7 increases from 0 to 1. 

It is an appropriate place here to mention a new subject of study started by 
Rosen (1985), that of anticipatory systems. The basis for this theory is the 
recognition that most (if not all) of the biological behaviour is of an 
anticipatory rather than a reactive nature. Let us see if our definition of an 
organism has incorporated into it this anticipatory character. From the total 
order on the set of L-objects we can conclude that certain things cannot 
happen as the organism develops (i.e., as i increases). For example, it cannot 
happen that f{s) = / ( s ' ) but {φjif)iΦjiS) Φ (0y,/)(0/iS'), it cannot happen that 
Ύ ΦΤ but φ-βΤ = φ^ίΤ\ and so on. So this list of impossible happenings can 
be considered as a prediction of things to come (or rather, not to come). Also, 
the linkage imposed on the states by the dynamics coupled with causality 
determines how a present state can be regarded as a model of a future state. 
There are many qualities like these one can list. So perhaps a formal study of 
the "category of anticipatory systems" is a perspective for the future. (Note this 
last statement is itself of an anticipatory character!) 

8. Organismic Observables 

An observable represents a capacity for interaction manifested by the ability 
to move a meter. Interactions and indicators are abundant at the level of the 
organism, especially for human organisms. Let us list a few—the trend is that 
the more "advanced" the organism, the more observables (where applicable) 
there are. 

Organismic observables (Comorosan, 1976) include measurements of 
external appearance such as size, posture, colour, and deformity, and external 
behaviour such as speech and motor functions. They also include such 
physiological conditions as body temperature, pulse, blood pressure, rate of 
respiration, brain electrical activity, excretion, sensory functions, and reflexes. 
There are also very much meter-dependent observables such as appearance 
under x-ray, fluoroscope, and microscope. (This gives an example of how we 
continually learn about natural systems as our means of observation and 
understanding grow.) For highly advanced organisms we can include 
psychological indicators such as intelligence tests, performance tests, etc. 
Social organisms can be classified according to social status, roles, and so on. 
At the present stage of the development of biology, however, the most reliable 
and precise observables (i.e., those that give us the most complete description 
of the organism) are probably the biochemical ones. Normal limits and 
extreme ranges of hundreds of biochemical variables have been determined. 
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methods of measurement specified, instruments perfected, and the meaning of 
changes in values established. Molecular biology is undoubtedly at the present 
time the central dogma of biology. Nevertheless, let us not forget what Daniel 
Bernoulli once said: There is no philosophy which is not founded upon 
knowledge of the phenomena, but to get any profit from the knowledge it is 
absolutely necessary to be a mathematician. Mathematical biology shall come 
of age as a matter of necessity. 

C. Organismic Sets and Living Systems 

9. Organismic Sets 

Organismic sets were built by Nicolas Rashevsky as a representation of 
biological organisms and societies on a relational basis (Rashevsky, 1972), and 
a wide range of biological and social phenomena were explained within this 
framework. 

The idea was first started by the observation (!) of the remarkable relational 
similarities among physics, biology, and sociology. The phenomena are 
properties of collections of things that are capable of performing certain 
activities that result in certain products (a cause-and-efiect phenomenology!). 
This led to the suggestion of the existence of a conceptual superstructure of 
which physics, biology, and sociology are three parallel branches, each 
partially isomorphic to the other two. (Note the resemblance of the idea of 
Section V I L l to this.) This conceptual superstructure is an organismic set. 

Even before we formally define what an organismic set is, we can see that the 
setting is perfect for a category theory to be postulated. After all, we are 
looking at a class of mathematical objects with the same structure. Let us 
first take a brief digression into considering the idea of structure in mathe
matics in terms of categories. 

10. Structured Categories 

DEFINITION . Let C be a fixed category (usually Ens). A category of C-
objects with structure, K, is given by the following: 

(1) Κ assigns to each C-object X a class K(X) of K-structures on X. A K-
structure is a pair (X, σ) with σ e K{X). 

(2) T o each ordered pair of K-structures {{X, σ), (Y,τ)). Κ assigns a subset 
Κ (σ ,τ ) of C(X,Y) of K-admissible C-morphisms from (Χ,σ) to [Υ,τ). For 
/ G Κ(σ, τ ) we write / : {X, σ) (7, τ ) . 

They satisfy the following: 

(i) Axiom of composition: If f:{X,a) ^ (Υ,τ) and g:(Y,T) ^ (Ζ,υ) then 
gof:(X,a)^(Z,v). 
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77. Organismic Sets 

DEFINITION . An organismic set is a finite set S such that 

(1) Corresponding to each element Ci e S there is a set 5 · of activities that Ci 
is capable of performing, and there is a set 5f of products that ^, can make. 

(2) The set of all potential activities S^ = |J , 5 · and the set of all products 
S^ = ( J /S f of the organismic set both have cardinality greater than one. 

(3) In a given environment £ at a given time i, each e^ only exhibits a 
proper subset Sf(£, t) of and makes only a proper subset S^{E, t) of 5f. This 
models adaptation and development as Ε and t vary. 

(4) S is partitioned into three disjoint subsets S^, ^2, and 53 such that 
S ^ S3 = S| u 2̂ is a "normal" organismic set in itself (i.e., S3 and its asso
ciated S3 and S§ are the apparently "useless" parts of the organismic set S.), 
S ^ S2 is an organismic set that can exist but will not develop, and Ŝ  is the 

(ii) Structure is abstract: If f:X-^Y'\sa. C-isomorphism, then for all 
τβΚ{Υ) there exists a unique aeK(X) such t h a t / : ( Χ , σ ) - > ( 7 , τ ) and / " ^ : 
( ^ , τ ) - ( ^ , σ ) . 

REMARKS . It follows from the definition that Ιχ.(Χ,σ)-^{Χ,σ) for all 
σ e K{X). Thus there is a category, denoted by K, with objects all K-structures 
and morphisms all K-admissible C-morphisms. There is also obviously the 
underlying C-object functor F:K-^C that on objects sends (X,σ) to X and on 
morphisms sends / : ( X , σ) (T, τ ) to fX-^Y. When C = Ens this functor is 
of course nothing but the forgetful functor of Example 11.8(1). 

Because of this Κ Κ association, it is actually sufiicient just to study the 
usual categories and forget about the 'structured categories.' But the latter 
tends to put things in a better perspective, and so we shall refer to them 
occasionally. 

EXAMPLES . Gp and Top can be regarded as categories of sets (i.e.. Ens-
objects) with structure, with Gp{X) = the set of all group structures on the set 
X and Top{X) = the set of all topologies on X. The admissible morphisms are 
chosen appropriately as group homomorphisms and continuous mappings, 
repectively. 

Topological groups can be regarded as a category of groups with 
structure; here we have C = Gp and K(X) = the set of all topologies on the 
group X compatible with the group structure, and a Gp-morphism is 
admissible if and only if it is continuous. 

T o cite a closer example, the category Ν can be considered as a categories of 
S-objects with structure where N((S, F)) is the collection of all sets of dynamics 
on the phase space S. 
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core of the organismic set so that S ^ cannot exist (i.e., S\ and 5? are 
necessary and sufficient for, at least a short range, existence of 5). 

(5) Taken alone, i.e., removed from 5, each β, e 5 has a survival time ti 
during which they can exist without the availability of S^. ti is short compared 
to the life span of 5. 

(6) Elements in (i.e., products) act on various e¡s, and so induce a 
nonempty set of relations 5̂^ with S. It is these relations that make us recognize 
an organism or a society as such. Members of Sr are in general fc-ary relations 
with k>2. 

DEFINITION . An organismic set is of order η if its elements are organismic 
sets of order η — 1. 

We ascribe the order η = 1 to the set of genes of cells. Then a multicellular 
organism is an organismic set of order η = 2. A small group of people (e.g., a 
family) is an organismic set of order η = 3. A tribe, as a collection of 
interacting families, is of the order π = 4, and so on. This leads to the idea of 
hierarchy of organismic sets. 

The preceding is a very much simplified version of Rashevsky's original 
formal definition of organismic sets. Attempts to study organismic sets using 
category theory were made (see Baianu, 1980, for a list references), but 
ordinary categories did not seem to be sufficient and the theory of 
supercategories was developed. We shall simply, for our purpose, consider the 
pieces we took and see if we can fit them into the formalism of our category N . 

72. Organismic Category 

Let O be the category of organismic sets; i.e., an O-object is an organismic 
set S. The elements e^e S can be considered as "states" of the system S. 
Members of the sets and 5^ can be considered as "observables" on S. In 
particular the relations in "Sr can be interpreted as the observable-induced 
relations. Although the real-valued requirement of the observables is not met 
in this case, one can always "digitize" and and impose artificial numbers 
on them. Of course this digitization has to be done in such a way that there is a 
minimal loss of information. This situation is perhaps similar to that of 
numerical taxonomy when we give numerical values to the different taxa. The 
activities and products in and can also be considered as dynamics 
induced on the system. Even the survival time i, of each ^, can be interpreted as 
the "inherent dynamics" of the element, or as the bounds {a^.^b^.). Thus the 
map 5h-^(S,F = 5^u5P,D = S ^ u S ^ u { i , } ) is one on the objects of a 
functor O ^ N . The various other properties of S can be looked upon as 
further structures on the objects; in other words, O can be studied as a 
category of N-objects with structure. 



154 A . H . L O U I E 

What, then, are the admissible N-morphisms φ between organismic sets S 
and S'l Besides the usual requirements of being an N-morphism (which 
implies φ\8-^5\ Sf-^S-^, and { i J - > { i ; } ) , we would like it to 
preserve the other structures as well. So we want (/>(S-(£, t)) cz S'i^{E, i ) , 
(/)(Sf(£,i)) c: 5 ;P(£ , I ) , and φ:8ι-^8\, 5 2 - > S 2 , S^-^S'^, etc. With such a 
definition, O-isomorphic objects would then be abstractly identical organ
ismic sets. 

13. Specialized Subsets and Hierarchy 

Admittedly, the previous section contains many hand-waving arguments. 
But the O Ν association looks rather promising, and the O-morphisms do 
indeed look like the transformations between abstract diagrams representing 
biological systems, i.e., the biotopological mappings between graphs of 
organisms (cf. Rashevsky, 1960). The preceding should be able to acquire 
mathematical rigor upon further "hard" analysis. 

Here we shall just look at two more points. First, the preservation of the 
"specialized subsets" 5i, S2 ,53,5^ and S^ of organismic sets by O-morphisms 
is rather interesting. Recalling that these five sets represent the core, the 
developer, the nonessential part, the activities, and the products of 5, 
respectively, we can view O-morphisms as mappings of different biological 
functions. Second, when we have a chain of organismic sets S ^ ^ S ^ - > 
53 _^ . . . ^here 5" is of order n, the arrows (ie., O-morphisms) in between them 
are then mappings from one "level" to the next in the hierarchy of organismic 
sets. These two ideas of "specialized subsets" and "hierarchy" are explored in 
detail in Miller's (1978) theory of living systems, our next topic. 

14. Living Systems 

The general living systems theory is presented in Miller (1978) in a 
conceptual setting concerned mainly with "concrete" systems that exist in 
space-time. It is not a mathematical treatment but it does seem to provide an 
(exhaustive) catalogue of what we know about biological and social systems 
(up to 1978). 

Miller classifies complex systems that carry out living processes into seven 
hierarchical levels—cell, organ, organism, group, organization, society, and 
supranational system (cf. the orders η = 1-7 of organismic sets). The central 
thesis is that living systems at all oT these levels are open systems composed of 
subsystems that process inputs, throughputs, and outputs. There are 19 critical 
subsystems essential for life, some of which process matter or energy (named 
suggestively ingestor, distributor, converter, producer, matter-energy storage, 
extruder, motor, and supporter), some of which process information (namely. 
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D. Description Spaces 

75. The Response Tensor and Description Space 

The concept of the response tensor was originally presented (Richardson, 
1980) in the context of irreversible thermodynamics. In that paper a metric 
algebra based upon the dissipation function associated with a system was 
introduced and a measure of the aging of the system was derived from this 
algebra. The mathematical formalism underlying the concepts of the response 
tensor and the space it spans called the description space was then presented as 
a phenomenological calculus for complex systems in Richardson, Louie, and 
Swaminathan (1982). 

In these few sections we shall show how these ideas are connected to those of 
categorical system theory. Let us first have a quick review of the basic 
definitions and postulates of the phenomenological calculus. 

input transducer, internal transducer, channel and net, decoder, associator, 
memory, decoder, encoder, and output transducer), and some of which 
process all three (reproducer and boundary). Together they make up a living 
system. For a Hst of what all these critical subsystems are at each of the seven 
levels of living systems, refer to Table 13-1 of Miller's book. 

What we want to do here is merely to point out how much one can achieve 
from two simple postulates (that of critical subsystems—specialized 
subsets—and that of hierarchy) and a large collection of observed data. W e 
can see how close Miller's theory of living systems is to Rashevsky's theory of 
organismic sets, and hence the former can somehow also be put into the 
framework of our categorical system theory. Here we probably want to map 
each of the critical subsystems to corresponding ones between systems, and 
"hierarchical morphisms" can also be considered. 

Finally, let us conclude these few sections on the "conceptual super
structure" of physical, biological, and social systems by saying that the 
relations among the components of these systems are not put in there by the 
imagination of the observer, as shepherds idly trace out a scorpion in the stars. 
These relations are inherent in the systems and are empirically discovered by 
the scientists. They are there, patterning the coacting reality, regardless of 
whether they are observed or not. We must pass beyond raw empiricism, 
beyond the provincialism of the disciplines, and learn from the cooperation of 
experiments and theories—how theories are created to stimulate further 
experiments and how experiments are designed to evaluate theories. The 
better we can formulate a problem, the more we will know about where and 
what to look for, and the closer we will get to obtaining a complete set of 
observables. 
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DEFINITION . Let V be the vector space equipped with the standard 
inner (dot) product. Let F be a (contravariant) vector in V and a be a 
(covariant) vector in the dual space V* (the space of all linear functionals 
on V). Then the dyad R = aF is a bihnear function from V* χ V to U (i.e., R is 
in T } ( F ) , the tensor space of type ( 1 , 1 ) over V) defined by R(a',F') = 
(a · a')(F · F'). A finite linear combination of dyads is called a dyadic, whose 
action on K* X Κ is defined the natural way (Hnearly on the images); so a 
dyadic is also a bilinear function from K* χ F to IR, i.e., in T\{V). 

It follows from dimensional arguments that the collection of all dyadics is 
actually the whole of T\{V). In other words, each tensor of type ( 1 , 1 ) has a 
representation as a dyadic. 

DEFINITION . Let R = Σ̂ · a,F, and S = ^jh^Gj be two dyadics. Their double 
dot product is the real number R : S = ΣJ(a' · b^).(F, · G^). 

One can check that the double dot product is independent of the 
representation of the dyadics and is in particular independent of the basis 
chosen for V. Also, it is easy to see that: is a positive definite bilinear form. This 
gives the following theorem. 

THEOREM. ( T } ( K ) , : ) is an inner product space. • 

The phenomenological calculus arising from the mathematical structure of 
( T } ( K ) , : ) is based upon three postulates: 

POSTULATE 1. A given system is characterized by a set of vectors {a ' : 
i = l , 2 , . . . , m } in (the dual space of) (R", and this set depends on the physi
cal constitution of the system. As far as describing the dynamic response of the 
system to the imposition of a set of forces (or more generally, causes) 
{F :̂ i = 1 ,2, . . . , m} in IR", they form a complete set of constitutive parameters. 
The index / denotes subsystems of the system. 

POSTULATE 2. The system dynamics are characterized phenomenologi-
cally by the dyadic response tensor R = Σ,a'F,. 

POSTULATE 3. The space spanned by R, i.e., for fixed covariant vectors 
aS...,a'" in F* = (R", the set [aS...,a'"] = { R = Σ,·aT,.:F¿ e Κ = ff^"}, is 
called the description space, and R is invariant under coordinate trans
formations. 

Thus the description space [ a \ . . . , a ' " ] is a linear subspace of T\(V) and 
hence ( [ a \ . . . , a ' " ] , : ) is an inner product space. The condition | R | = 
( R : R ) > 0 for a response tensor is interpreted as a principle of directionality 
for dissipation, aging, and in fact all cause-and-eñect phenomenologies. 
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Instead of the EucHdean inner product space V = (Κ", · ) , we could have 
used a general Hilbert space Η and all of the mathematics would still go 
through. In the special case oí Η = we would have incorporated into the 
setting the "time-dependence" of the causes F(i) G and the "cause-
dependence" of the constitutive parameters a(F) G ( L ^ ) * = L^. This "Hilbert 
description space" turns out to be a very interesting mathematical object, the 
study of which is certainly a worthy project. 

16. The Description Space as a Natural System 

Let S be an open subset of the Euclidean space V =U". A linear functional 
a: R" ̂  [R (a G K * ) can be considered as a real-valued function, i.e., an 
observable, on the state space S. So the set of constitutive parameters (or 
"coordinate vectors") {a '} of the description space [ a \ . , . , a ' " ] can be 
considered as the set of observables on S; i.e., F = { a ' } . 

Recall [see Section IV.4 and Example V.2(5)] that a vector field F: S 
defining an autonomous differential equation 

dx/dt = ¥{x) (1) 

gives rise to a (continuously differentiable)-dynamics Τ where Γ ( χ , t) = 
y^(t) is the unique solution to (1) satisfying T{x, 0) = y^(0) = x. It is interesting 
to note that the converse also holds, namely, given a -dynamics T: 
dom Τ CI 5 X IR -> S (where S and IR have the usual topology), there is asso
ciated with it a vector filed and hence an autonomous differential equation. 
Define F: 5 [ R " by 

F(x) = ^ T ( x , i ) U o (2) 

then for χ G S, F(x) is a vector in IR", which we can think of as the tangent vector 
to the F-trajectory yx{ax,b^) at ί = 0. And it is clear that y^ is the unique 
solution to the autonomous differential Eq. (1) satisfying the initial condition 
^^(0) = X. Thus this establishes a correspondence between vector fields F and 

-dynamics Τ on S. The collection of m-tuples of causes (or "components") 
{FJ defining response tensors R = Σ,aTJ can then be interpreted as C^-
dynamics on the phase space S through this correspondence. This family of 

-dynamics on S is then considered as the set D for the natural system 
{S,F,D). 

So we have established that a description space over F = IR" is in fact a 
special kind of natural systems fully equipped with its sets of observables and 
dynamics. This embedding [aS. . . , a'"] (S, F, D) is quite remarkable in that 
even the physical interpretation of the different corresponding entities 
coincides. The set of constitutive parameters of a description space and the set 
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of observables of a natural system are both indicators of the complexity of the 
system, and the former set is actually what we observe on a physical system (by 
Postulate 1 of the previous section). The connection F <^ Τ between V and D 
is even more transparent: a force field is the time derivative of a dynamics [in 
the sense of Eq. (2)] in classical physics. 

77. The Category of Description Spaces 

N o w that we have found out that description spaces are representable as 
N-objects, the next natural question to ask is, "What are the N-morphisms 
between description spaces that would preserve all the relevant structures?" 
We can consider description spaces as N-objects with structure and look for 
admissible N-morphisms (see Definition VIL 10). But because of the Κ Κ 
association and the underlying object functor Κ C mentioned in Sec
tion VI I . 10, we can simply consider the collection of all description spaces 
as a usual category equipped with a functor to N . This functor takes a 
description space to its associated N-object, and an N-morphism between 
description spaces to one between N-objects. 

Let us call the category of description spaces R, i.e., an R-object is a 
description space [ a \ . . . , a'"] (over the inner product space V = U"). Since a 
description space has a "linear" structure, we would like an N-morphism 
between two description spaces (/>: [a \ . . . , a'"] ^ [b \ . . . , b^] to be "linear" as 
well: 

Φ(Σ»'¥^ = ΙΦ(^% (1) 

and so it is clear that φ is determined upon further restriction of the m images 
(/>(a^),. . . ,(/)(a '")6 { b \ . . . , b ^ } to satisfy (1). The linearity condition (1) is a 
restriction of φ on the observables. This is analogous to the situation in linear 
algebra where a linear transformation is uniquely determined by its action on 
a basis of the domain vector space. So the set of coordinate vectors {a'} does 
indeed behave like a basis although it is not a basis in the vector space sense. 
By virtue of φ being an N-morphism and the linearity condition (1), if, 
for example, a^ = c^a^ 4- C 2 ^ ^ for Cj , C2 e U, then we must have (/>(a^) = 
Ci0(a^) + C2(/>(a^). Note that the relation between R and Ν is astonishingly 
similar to that between Vect and Ens, where Vect is the category of vector 
spaces and linear transformations over a fixed field. 

18. Special R-Morphisms 

It is shown in Richardson, Louie, and Swaminathan (1982) that if the co
ordinate vectors {a '} span a subspace of F* of dimension k{<n), then the 
description space [ a \ . . . , a ' " ] is of dimension fcn(over U). N o w suppose the 
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coordinate vectors {b^} of a second description space [ b \ . . . , b ' ] also span a 
subspace of K* of dimension /c, then [ b \ . . . , b ' ] is again of dimension kn and 
so we would expect somehow that the two description spaces are 
"isomorphic." 

N o w what is an R-isomorphism? Clearly, it has to be an N-isomorphism in 
the first place. So far we have neglected the double dot product on the 
description spaces. Recalling that a linear transformation between two inner 
product spaces of the same (finite) dimension is an isomorphism if and only if 
it preserves inner products, we shall say that an R-morphism φ preserves 
double dot products if for all response tensors R and S, 

η:Β = φ{η):φ{Β) (2) 

[Note the two double dot products appearing on the two sides of Eq. (2) are on 
different description spaces.] Then we shall say that the two description spaces 
[ a \ . . . , a ' " ] and [ b \ . . . , b ^ ] (of the same dimension kn) are R-isomorphic if 
there is an R-morphism that is an N-isomorphism and preserves double dot 
products between the two spaces. So under this definition, R-isomorphic 
description spaces are abstractly the same with respect to all of their 
mathematical structures. 

Next, suppose (/> 6 R ( [ a \ . . . , a ' " ] , [ b \ . . . , b ' ] ) is such that there exists an 
ε > 0 and for every R e [ a \ . . . , a ' " ] , |R — (/>(R)| < ε. This condition can be 
roughly stated as |R(a) — R(b)| < ε in which the notation is self-explanatory. 
This leads us to the idea of the "distance" between response tensors from 
different description spaces. It is intuitively clear that the closer two 
description spaces are to being "identical," the smaller the norm |R(a) — R(b)| 
will be. And conversely the smaller the norm, the more R-isomorphic the two 
spaces are. So while the condition |R| > 0 describes the dissipation (i.e., aging) 
within a system, the condition |R(a) — R(b)| > 0 allows one to compare the 
extent of aging between two systems. The former depends only on the con
stitution (i.e., structure) of a system itself, and the latter depends on the 
morphisms (i.e., on how close they can get to being identities) between systems. 

There is, moreover, an alternate description of the intersystem comparision 
of aging. As usual, R-monomorphisms give rise to a partial order on the R-
objects, where an R-monomorphism is some natural analogue of an injective 
linear transformation and an N-monomorphism. Thus |R(a) — R(b)| gives an 
indication of how close two systems are in age while R(a) < R(b) gives an 
ordering, a directionality to aging. This bears a remarkable resemblance to the 
aspects of simultaneity and temporal succession in the concept of time we 
discussed in Section V.8. Perhaps this is not too surprising. After all, although 
aging and time are distinct concepts, they do share a lot of characteristics in 
common. In particular, they are both clocks—aging is an intrinsic clock and 
time is an extrinsic clock—for natural systems. 
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Vin. CONCLUSION 

And the end of all our exploring 
Will be to arrive where we started 
And know the place for the first time. 

T. S. Eliot, Little Gidding 

Our investigation of natural systems started with the reciprocity between 
observables and dynamics, which reflects the duality of the structural and 
functional aspects of a system. The formal study is based on the encoding of 
these static and dynamic realities into mathematical objects in the appropriate 
categories, and above all based on the two fundamental propositions of 
Section I I I . l . 

Although Bertrand Russell's idea on the scientific process provides a 
framework on which to discuss the modelling relation (see Section VL2), 
which is crucial to our treatment, the term "scientific process" is somewhat 
inadequate. It is true that we do learn from observation and collection of 
experimental data, that we do try to theorize to explain these data, and that we 
do correlate between experiments and theories in order to better both. But this 
is modelling, which only forms a part of the scientific process. Science is more 
than that. Especially since Albert Einstein, the idea of creative imagination 
enters science in an essential way. Innovations in science are consequences 
more of the genius of the human brain than of "trial-and-error" modelling. So 
if the modelling relation diagrams in Section VI.2 were to represent the 
scientific process, on them we should perhaps superimpose pictures of the 
human brain. As the nineteenth-century scientist Baron Justus von Liebig 
said, "Every property of an object may give, under appropriate circumstances, 
a key to a locked door; but theory is the master key that opens all doors." And 

19. Recent Developments 

The epistemological exploration of the phenomenological calculus has 
been continued since the 1982 paper. The sequence of additional publications 
so far consists of Louie, Richardson and Swaminathan (1982), Louie and 
Richardson (1985), Richardson and Louie (1983), Richardson and Louie 
(1985), and Louie and Richardson (1985). The phenomenological calculus 
turns out to be a general algorithm for the synthesis of mathematical represen
tations of complex, highly interacting systems, and the metric structure inher
ent in the algorithm provides relationship-connecting representations. 

Topics discussed under the framework of the phenomenological calculus 
include recognition processes, duality and invariance, projective represen
tations, irreversible thermodynamics, quantum mechanics, relativity, and 
information. The list is surprisingly diverse. 
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abstract theories not directly constructed from models of the observed 
phenomena are probably the best keys. 

Having said that natural systems are parts of the external world hence 
real while formal systems are creations of our minds hence abstract (see 
Section VI. 1), we should recognize that the distinctions between reality and 
abstraction are not that clear. The real can simply be considered as a conse
quence of the abstract: "So the living and the dead, things animate and 
inanimate, we dwellers in the world and this world wherein we dwell . . . are 
bound alike by physical and mathematical law" (D'Arcy Wentworth 
Thompson). On the other hand, the abstract can simply be considered as 
a piece of the real: " I believe that mathematical reality lies outside us, and 
that our function is to discover or observe it, and that the theorems which 
we prove and which we describe grandiloquently as our creations are sim
ply our notes of our observations" (Godfrey Harold Hardy). These consid
erations reinforce one of the points we try to make in this study, namely, 
that the abstract properties of measurement pertain as much to pure mathe
matics as they do to natural systems, and conversely, that pure mathematics 
is in a sense a result of our measurements. 

In Section V I I we saw how categorical system theory can be applied to 
analyze biological problems. The exploration of each area turned out to be the 
study of a structured category on the category of natural systems. We 
examined these categories individually but we did not really consider the 
relations among them. Recall that there are, roughly speaking, three levels in 
the hierarchy within category theory: namely, categories, functors, and natural 
transformations. We certainly did use categories a lot, and functors were also 
employed occasionally, but we did not really talk about natural trans
formations other than just defining them (see the Definition in Section 11.11). 
Since functors are used to "relate" categories and the functors between two 
categories are the objects of the "functor category" (see Section 11.12) in which 
the morphisms are natural transformations, and since natural transformations 
are intimately related to the concept of similarity [Rosen (1978)], it is certainly 
worthwhile to look into these further. Also , the categories Top and Vect 
appeared in various places in this study, and it would be fruitful to look for the 
connections between these and our "system categories" in more detail. 

In sum, this work represents a formal extension of some of the ideas 
suggested in Rosen (1978). I have expressed the fundamentals of measurement 
and representation of natural systems in the setting of the abstract mathemat
ical theory of categories. I believe I have achieved in this work, with perhaps 
the exception of the last section, a level of mathematical rigour that is re
cognizable as such. In this Section V I I , although the mathematics is not as 
stiff, I have managed to weave together several theories of natural (alias 
biological, aging, dissipative, organismic, living, complex. . . ) systems from the 
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