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The mathemat ical  theory  of  categories is used as a tool  in the description of  the structure 
and funct ion of  natural systems. The connect ions between the category of  natural systems, 
with observables and dynamics,  and the phenomenological  calculus of  response tensors, 
duality- and adjoint-invariance diagrams are established. The unified theory is applied to 
the analysis of  hierarchies, pattern generation and the structure and dynamics of  proteins. 

1. Prologue. This essay serves as an introduction to the unification of 
categorical system theory (Louie, 1983) and the phenomenological calculus 
presented in a sequence of our previous papers (Richardson, 1980; Richard- 
son et al., 1982; Louie et al., 1982; Louie and Richardson, 1983; Richardson 
and Louie, 1983). Henceforth the above references are respectively denoted 
L-83, R-80, R-L-S-82, L-R-S-82, L-R-83 and R-L-83. The basic defini- 
tions of category theory [treated in any one of the standard tests on the 
subject, e.g. Mac Lane (1971)]are assumed. The connections between 
categorical system theory and the phenomenological calculus are developed 
to a point: where the biological examples considered in the above references 
can be analysed naturally. We shall also present an abstract description of the 
structure and dynamics of proteins. On the way, we meet duality-invariance 
diagrams (DIDs) and adjoint-invariance diagrams (AIDs), and there is a 
digression on the categorical system theory of hierarchies as well as one on 
Rosen's ( 1981 ) treatment of pattern generation. 

2. The Category o f  Natural Systems. The thesis L-83 is an investigation 
of the structure and function of biological systems using the theory of 
categories. It examines the relationships which exist between different 
descriptions of natural systems through measurement of observables and 
dynamical interactions. Natural systems are treated formally as abstract 
mathematical objects in a category called N. 

An N-object is a triple (S, F, D), where S is a set, F is a set of real-valued 
functions on S and D is a set of dynamics, on S. The elements of S are the 
states and the elements of F are the observables of the natural system. 
An element of D, a dynamics, is a one-parameter group of bijections on 
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S, T = { Tt ~ A(S): t E JR}. A dynamical response is initiated by the act of 
observation through a measuring instrument, while the change-of-state of 
a dynamics is itself an observable; thus there exists a duality between the 
static and dynamic, and hence structural and functional, aspects of a natural 
system. 

An N-morphism ~ E N((S, F, D), (S', F', D')) is a triple of functions 
S ---> S', F ~ F', D ~ D', linked by the following properties: (a) for a l l f E  F 
and all x, y ~ S, f ( x )  = f ( y )  implies (Of)(r = (~bf)(r and (b) for every 
T E D and every t ~ F,,, the diagram 

S ~ S' 
I 

Tt I ,l, 
4, 

S ~ S' 
r 

commutes. 
Property (a) says roughly that similar states are mapped to similar states, 

joining ~ on the states and on the observables, and property (b) implies a 
compatibility of dynamics between systems, relating r on the states and on 
the dynamics. 

In L-83 the category N was constructed in two stages. A category S, 
consisting of objects (S, F) and morphisms 0: S ~ S' ,  F ~ F '  with property 
(a), was first studied as a representation of the static aspects of systems with 
observables. Then duality dictated the alternate descriptions of the dynamic 
aspects, and the category S equipped with dynamics gave the category N. 

The category N provides numerous biological implications ranging from 
cellular development and senescence to organismic sets as general living 
systems. These are discussed in L-83. 

3. Phenomenological  Connections. Our sequence of papers on the phe- 
nomenological calculus is a continuing exploration into the mathematical 
structures associated with the response tensor and description space, and 
their metaphorical interpretations in biological terms. A response tensor 
is a dyadic, a tensor of  type (1, 1) over a real Hilbert space H [i.e. it is an 
element of  TI(H)],  and is of  the form 

R = aiut (2) 

(sum over i: the Einstein summation convention) for fixed a I . . . .  , a m E H*. 
The linear subspace 

[a 1, �9 �9 �9 , a m ] = [a t] = (atui: u l , .  �9 �9 ,Um EI-I} (3) 
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of  T[(H) spanned by the response tensors is the description space. [a t] is a 
Hilbert space with the double inner product 

((aiui, aJv/)) = (a i, d)*  (u t, v/) = L~J(ui, v/) (4) 

(L-R-S-82).  The set {a ~} of  constitutive parameters phenomenologically 
characterizes the system [aq and forms a complete set of  descriptions of  
the dynamic response of the system to the imposition of a set of  forces 
(or more generally, causes) { ut}. 

First let us consider the special Hilbert space H = ]R n with the standard 
inner product, and let S be an open subset of  ]R n. A linear functional a: 
R n -~ ~, (a E H*) is in particular a real-valued function, i.e. an observable, 
on the state space S. So the set of  constitutive parameters (or 'coordinate 
vectors') {a t} of the description space [a/] can be taken as the set of  ob- 
servables on S; i.e. F = {ai}. 

A vector field u: S ~ JR" defining an autonomous differential equation 

dx 
- -  = u ( x )  (5) 
dt 

gives rise to a C 1 (continuously differentiable)-dynamics T, where Tt(x) = 
yx( t )  is the unique solution to (5) satisfying To(x) = yx(O) = x.  It is interest- 
ing to note that the converse also holds; namely, given a Cl-dynamics T: 
S • ~ -~ S (where S and 1~ have the usual topology), there is associated 
with it a vector field and hence an autonomous differential equation. Define 
u: S ~ ~ n  by 

u(x)  = ~ Tt(x) t=o. (6) 

Then for x E S u(x)  is a vector in F, ,1 which we can think of  as the tangent 
vector to the T-trajectory Y x ( ~ )  = { Tt(x): t E JR] at t = 0. And it is clear 
that Yx is the unique solution to the autonomous differential equation (5) 
satisfying the initial condition Yx (0) = x.  Thus this establishes a correspon- 
dence between vector fields u and Cl-dynamics T on S. The collection of 
m-tuples of  components ('forces') {ui} defining response tensors R = aiut 
can then be interpreted as Cl-dynamics on the phase space S through this 
correspondence. This family of CLdynamics on S is then considered as the 
set D for the natural system (S, F, D). 

So we have shown that a description space over H = 1~ n is in fact a 
special kind of natural system fully equipped with its sets of  observables 
and dynamics. This 'embedding' [a t] ~ (S, F, D) is quite remarkable in 
that even the physical interpretation of the different corresponding entities 
coincides. The set of  constitutive parameters {a i} of a description space 
and the set of  observables F of  a natural system are both indicators of 
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the complexity of  the system, and the former set is actually what we observe 
on a physical system. The connection u ~ T between H and D is even more 
transparent: a force vector field is the time derivative of  a dynamics [in 
the sense of  equation (6)] in classical physics. 

Instead of  the Euclidean inner product  space H = (]R n, ') we could have 
used a general Hilbert space and all of  the above discussions would still go 
through. Since every Hilbert space is isomorphic to 12(A) for some set A 
(Rudin, 1974, Section 4.19) and 12(A) = L2(/~), where /a is the counting 
measure on A, it is without  loss of  generality to let H = L2(~) for some 
measure /a in the definition of  description space. Under this formulation 
we would have incorporated into the setting the ' t ime-dependence'  of  the 
causes u(t) E L2(la) and the 'cause-dependence' of  the constitutive para- 
meters a(u) C L2(~) * = L2(/~). These are discussed in R-L-S-82  and L-  
R-S-82.  

The description space [a i] is in fact more than an N-object: it is an N- 
object with linear structure. The category of  description spaces R bears 
the same relationship to N as that o f  Vect to Ens, where Vect is the category 
of  vector spaces and linear transformations and Ens is the category of  sets 
and functions. A Vect-morphism, a linear transformation, is an Ens-morphism 
which preserves the linear structure of  vector spaces. Similarly, an R-morphism 
is an N-morphism which preserves the linear structure of  description spaces: 

and 

~b E R([a;], [b/] ) if ~b E N([ai], [bi]) 

ck(aiui) = ck(ai)ui. (7) 

Note that the linearity condition (7) is a restriction of  ~ on the observables 
[ a i} and 4~ is uniquely determined by the m images { q~(ai)}. This is analogous 
to the situation in Vect, where a linear transformation is uniquely deter- 
mined by its action on a basis o f  the domain vector space. In L-R-83  the 
latter is represented by the adjointness of  the 'free functor '  1~: Ens --> Veer 
and the 'forgetful functor '  t3: Vect -+ Ens: 

Ens(A, GB) -~ Vect(l~A, B). (8) 

We now have the adjointness 

N([ai], (~[bJ]) ~ R(l~[al], [bJ]), (9) 

where F: N ~ R is the functor which sends '[ai] considered as a natural 
system' to ' [ a  i] considered as a description space', and 1~: R -+ N is the 
'amnesic functor '  which forgets the linear structure of  a description space 
but  retains its observable-dynamics equipment.  
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4. Special R-Morphisms. It is shown in R-L-S-82  that if the coordinate 
v e c t o r s  {a i} span a subspace of  (]R")* of  dimension k(<<.n), then the de- 
scription space [a 1, . . . , a m ] is of  dimension kn (over IR). Now suppose 
the coordinate vectors {b/} of a second description space [b 1 . . . .  , b l] also 
span a subspace of (1Rn) * of  dimension k. Then [ b  1, . . . , b l] is again of  
dimension kn and so we would expect somehow that the two description 
spaces are 'isomorphic'. 

Now what is an R-isomorphism? Clearly it has to be an N-isomorphism 
in the first place. So far we have neglected the double inner product on the 
description spaces. Recalling that a linear transformation between two 
inner product spaces of the same (finite) dimension is an isomorphism iff 
it preserves inner products, we shall say that an R-morphism q~ preserves 
double inner products if for all response tensors R and S, 

((R, S)) = ((~b(R), ~b(S))). (10) 

(Note the two double inner products appearing on the two sides of  equation 
(10) are on different description spaces.) Then we shall say that two descrip- 
tion spaces [a;] and [b i] of  the same finite dimension are R-isomorphic 
if there is an R-morphism which is an N-isomorphism and preserves double 
inner products between the two spaces. So under this definition R-isomorphic 
description spaces are abstractly the same with respect to all of their mathe- 
matical structures. 

Next, suppose ~ E R([ai], [b/]) is such that there exists an e > 0 and for 
every R E [ai], IIR -- ~(R)II < e. This condition can be roughly stated as 
IIR(a) -- R(b)ll < e, in which the notation is self-explanatory. This leads 
us to the idea of the 'distance' between response tensors from different 
description spaces. It is intuitively clear that the closer two description 
spaces are to being 'identical', the smaller the norm [IR(a) - -R(b) l l  will 
be. And conversely, the smaller the norm is, the more R-isomorphic the 
two spaces are. So while the condition IIRII 1> 0 describes the dissipation 
(i.e. aging) within a system (R-80),  the condition IIR(a) --R(b)ll  1> 0 allows 
one to compare the extent of  aging between two systems. The former 
depends on the constitution (i.e. structure) of  a system itself and the latter 
depends on the morphisms (i.e. on how close they can get to being identities) 
between systems. 

There is, moreover, an alternate description of  the inter-system com- 
parison of  aging. As usual, R-monomorphisms give rise to a partial order 
on the R-objects, where an R-monomorphism is some natural analogue of  
an injective linear transformation and an N-monomorphism. Thus II R(a) -- 
R(b)ll gives an indication of  how close two systems are in age while R(a)<~ 
R(b) gives an ordering, a directionality to aging. This bears a remarkable 
resemblance to the aspects of  simultaneity and temporal succession in the 
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concept of  time discussed in Rosen (1982). Perhaps this is not too surprising. 
After all, although aging and time are distinct concepts, they do share a lot 
of  characteristics in common. In particular, they are both clocks--aging is 
an intrinsic clock and time is an extrinsic c lock - - fo r  natural systems. 

5. Categorical Hierarchies. There is a categorical definition of  'structure' 
but here we shall only take the term intuitively. Let us consider the idea 
that 'R is a category of  N-objects with linear structure' in more detail. 
The adjoint isomorphism (9) can be paraphrased into 

[a s] ~ R 

P / <1,) 
/ 

(S, F, D) ~ N  

representing the concept that R is one step up the hierarchy on N. The 
category N, in turn, can be further 'decomposed',  and we eventually obtain 

[a i ] E R 

( S , F , D ) E N  

(S, F) E S  

TI 
S E Ens 

Note that the arrows in the 'tower' (12) are functors, mapping between 
different hierarchical levels. Those pointing up put additional structures on 
the objects and those pointing down 'forget' some structures. The functors 
can be appropriately composed to map between categories from different 
levels. In particular, we have [a i] E R 

S E Ens 

where the downward arrow is the forgetful functor for R. As the only 
categories we consider are 'concrete', i.e. there are forgetful functors from 
them to Ens, the category Ens underlies all categorical hierarchies, forming 
the base category of our study. 

While adjoint functors provide connections between different hierarchical 
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levels, objects on the same level are mapped to one another by morphisms. 
An R-morphism, for example, sends one natural system to a second, as in 

[a t] ~ �9 [b/], (14) 

and together with its functorial image in Ens we have the commutative 

[atl ~ [b/l 

l 1 
S ..... ~ S' 

diagram 

(15) 

Morphisms can be used to compare objects on the same hierarchical level. 
Monomorphisms induce a partial ordering of objects, and this leads to the 
metaphor for growth and aging discussed in L-83. 

6. Category of Diagrams. Let A and B be categories. The functor category 
B A has as objects all (covariant) functors from A to B and has as morphisms 
all natural transformations. 

There are many situations in mathematics where a special part provides 
a universal description of  the whole, For example (as we mentioned before), 
every Hilbert space is isomorphic to L2(/z) for some measure #, and thus 
the special Hilbert space L2(/~) supplies a representation for all Hilbert 
spaces; in linear algebra 1~ n (respectively, C n) is canonical for all finite- 
dimensional real (respectively, complex) vector spaces; and so on. There 
are also many instances where a special part and its 'subparts' together 
describe the whole. The Stone Representation Theorem states that each 
Boolean algebra is isomorphic to a subalgebra of a power set algebra and 
hence the power set algebra is such a special part. Cayley's Theorem states 
that every group is isomorphic to a subgroup of the group of permutations 
over some appropriate set and hence permutation groups are prototypes in 
group theory. 

It turns out that functor categories B A are similarly special in category 
theory. If A is the trivial category with a single objectA and a single morphism 
1A ~ A(A, A), then a functor 1 ~ from A to B can be represented by the 
diagram (16); i.e. the functor category B A can be considered as consisting 
of the objects of B (and their identity morphisms). 

If A is a category with two objects A 1 and A:, morphisms 1,4, , 1~4, and 
a single r E A(A1, A:), then A can be specified by diagram (17) (where 
the identity morphisms 1A, and 1A, are implied and hence omitted for 
simplicity). A functor 1 r from A to B can be represented by diagram (18). 
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( 1A 

(16) 

A1 P A  2 (17) 

f 

A1 

l 
~A 2 

"I~A2 w 

(18) 

Hence B A can be considered as consisting of  all copies in B of  the 'pattern'  
(17), i.e. all morphisms ~ E B(BI, B2). Note that diagram (15) is an example 
of  the general diagram (18). 

We thus see that when the domain category A is chosen suitably, objects 
and morphisms of  any category B have representations in a functor  category 
BA; this gives a special role to functor categories. More generally, any 
category A can be specified by a diagram of  arrows and the functor category 
B A can be regarded as the collection of  all copies in B of  this diagram 
(pattern), The functor  category B A is therefore also called the category 
of  diagrams in B (over A). 

7. Ad/oint-invariance Diagram. The adjoint-invariance diagram (AID) was 
introduced in L-R-83 as a mathematical morphology with which to analyse 
natural phenomena. The fundamental premises are that a representation of 
relevant features o f  the invariants of  nature can be synthesized only when 
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one has some measure of the appearances a n d  their adjoints, namely the 
producers of these appearances (i.e. the projections and the projectors in 
R-L-83), and that invariants admit equivalent alternate descriptions. An 
AID has the form 

P 
x ~ y  

(19) 

a 4  b 

where ~6: x -~ y and G: b ~- a form a pair of adjoints and the middle line is 
an invariance of form, a natural isomorphism of structures. 

The AID (19) is the diagram of the following category A. A has six objects: 
a, b, x ,  y ,  ax  and by .  The distinguished pair of morphisms _F E A(x, y) 
and G E A(b,a) are adjoint to each other. This abstract adjointness, as 
we shall see shortly, has realizations in the various image categories. The 
objects ax  and b y  are A-isomorphic. The 'inward' morphisms from a, x, 
b, y to ax and b y  are monomorphisms (generalized injections) and the 
'outward' morphisms are epimorphisms (generalized projections). As before, 
all identity morphisms are implied. This six-object category A is given the 
name A I D - c a t e g o r y .  

Let us consider several examples of functor categories over A. Since the 
form of an AID was suggested by that of a diagram depicting adjoint functors 
(L-R-83, Section 7), the latter should be an image of the former in an 
appropriate category, Indeed, a functor from A to the category Cat of 
(small) categories results in the diagram 

X , 

X ( X ,  B( X, 8)" (20) 

Fi ~ a i F  z 

a i ~ 

LiJ 

= R = ajJ ~ 

at 
L i] 

(21) 

which is diagram (24) of L-R-83. The AID (20) is, in other words, an ele- 
ment of Cat A . 

A realization of the pattern (19) in the category R of description spaces 
(i.e. an element of R a )  is the duality-invariance diagram (DID) for the 
response tensor 
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Recall (L-R-83) that duality is a function 1) from a category C to C itself 
such that 1) 2 is the identity. Since 

C(X, DY) ~ C(DX, O 2 Y) ~ C(DX, Y), (22) 

a duality is self-adjoint. Thus a DID (diagram 30) is a special type of AID. 
An element of  Ens A has the AID 

A �9 E n s ( A ,  �9 ) 

~ Ens(A, B ) j 

E n s ( ' , B )  4 B 

(23) 

which is the representation of the universal (M, R)-system 

f 
A P B �9 E n s ( A ,  B )  (24) 

(L-R-83, Section 6). With appropriate choices of  the category B, other 
AIDS and DIDS we considered (in L-R-83 and R-L-83) can similarly be 
described as elements of the functor category B A . 

8. Duality Vs Adjointness. In this section we compare and contrast an 
adjoint pair (/~, G) with a self-adjoint pair (/), /9), whe re / )  is a duality. 
Recall that a duality is self-adjoint. 

Duality provides a canonical symmetric pair of alternate descriptions 
of phenomena. Its origin is the necessary intervention of sense perception 
in the knowledge of left and right, Yin and Yang, the two-ness of nature. 
The importance of  duality appears in the enantiomorphic crystals discovered 
by Pasteur. Enantiomorphy arises as a consequence of the mixture of sym- 
metry and dissymmetry. To Pasteur the dissymmetry of substances is even 
a prerequisite for life. This conception on the relationship between life and 
dissymmetry cannot be taken literally, but the union of symmetry and dis- 
symmetry does lie in the very root of the generation of phenomena. A phe- 
nomenon can only exist in an environment possessing its characteristic 
symmetry or a lesser symmetry. It is the dissymmetry that creates the phe- 
nomenon. And it is this very nature of phenomena that necessitates the 
generalization from the symmetric pair (D, /3) of alternate descriptions to 
the dissymmetric pair (F, G). 

The difference between duality and adjointness is also a hierarchical one. 
Dualities often map between conjugate objects on the same level: force- 
and-flux, cause-and-effect, and enzyme-and-substrate are examples. Adjoints, 
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on the other hand, often send objects between hierarchical levels: sets and 
vector spaces, natural systems and description spaces, and metabolism and 
repair are examples. 

It is best to illustrate the above with the AID of a bilinear form repre- 
senting the structure of  a chemical reaction 

ui A~ 
rj 

V 1 �9 Sj 

A5 

(25) 

(which is Figure 5 of R-L-83)  and the DID of a response tensor (diagram 21). 
In both diagrams (25) and (21) the top arrows represent operators 'sum- 

ming over i', while the bot tom arrows act with 'summing over j'. In terms 
of bra- and ket-vectors (R-L-83),  we have 

Irp = (uqA  

(vii = A} Is/) (26) 

for diagram (25) and 

Ifi) = (F~ I L;/ 

(atl = Lellal) 

for diagram (21). Since L ~/= (a t, aJ) * is realsymmetric, 

(Li/: sum over i) = (LJi: sum over i), 

whence equations (27) can be replaced by 

(27) 

(28) 

(37"1 = LJilF/) 

(aq = Li/laj). 
(29) 

Note that D = (L 0) is a duality at the level of  tensor spaces (L-R-83),  Section 
4), and hence self-adjoint--which is, incidentally, also a property of  real 
symmetric matrices. Thus, the top and bottom arrows of  diagram (21) 
become 'the same' and diagram (21) takes the form of  a DID (diagram 30). 

Contrariwise, A~ = IIjlI / (notation of  R-L-83,  Section 5) is not sym- 
metric with respect to the indices, so F = (A~: sum over i) and G = (,4,/.: 
sum over j) are not equal. They are, however, an adjoint pair: an adjoint 
of  a matrix is the conjugate transpose (transpose for a real matrix). Thus 
diagram (25) does indeed have the form of  an AID (19). 
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b 
X ~ y  

\ / 
ax = by (30) 

J \ 
a ~  b 

b 

The dual i ty /}  = (L ~y) sends causes to effects, mapping on the same level. 
Recalling the concepts of  categorical hierarchies of  Section 5, this self- 
adjoint operator can therefore be likened to a morphism. The adjoint pair 
(/~, G), as in the chemical example of  Section 5 in R-L-83,  functions be- 
tween atomic and molecular descriptions, i.e different levels. So adjoint 
operators which are not  self-adjoint are comparable to functors. In con- 
clusion, 'self-adjointness' o f  maps can be established as a test for whether 
objects are on the same hierarchical level. 

9. Transformation o f  Diagrams. We now return to morphisms in functor 
categories, i.e. natural transformations of functors. First let A be the two- 
object category from Section 6. If l] and "V are two functors from A to B, 
then a natural transformation q~ E B A ([A, V) has the diagram 

[.JA I �9 0A 2 
I 

r [ (31) 

which generalizes diagram (18). The top and bot tom arrows can be con- 
sidered as analogues of  each other. Diagrams of the form (31) have inter- 
esting interpretations in the concept of  similarity in physics and biology, 
and these implications are discussed in detail in Rosen (1978, Chapter 7). 

When A is the six-object AID category, a natural transformation av of  
two functors 0 and "~, realized in a category B as two AIDs, takes the form 
as in diagram (32). 

For example, in the category R two functors can be realized as DID 
representations of  two response tensors R and R' ,  which are alternate 
descriptions (projections, R-L-83)  of  the inaccessible underlying invariant 
I. Then a natural transformation ~I, of  one to the other acts as a means for 
comparing the two descriptions of phenomena under different sets of  
projectors and has the morphology as in diagram (33). 

Diagram 33 can be simplified to the bilinear coordinate-transformation 
diagram (34) (L-R-83,  Section 5). 
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(JP 
Ox , Oy 

Oax "~ ~Jby ( 

(Ja /, O b  
Od 

1~ 
vP Vx , ,y  

" ~  CVax ~ Vby / 

9a S ~ % 
9d 

(32) 

L q 

Fi "~a ,F ,  = R = aiJi K 

a,/ 
1 a i 

L q 

l ob 

LiJ r 
F'i l. ji' \ / 

\ ,,"p; = R'  = a;~ ' /  

a i' ~ ~ a~ 
L i/, 

(33) 

D 
atFi I ~ arli 

~ I ~176 
it t a F} I ,aj'J i' 

D 

(34) 
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Noting the resemblance o f  diagram (34) to diagram (31), we see that an 
alternate description is a kind of  similarity. 

The above discussion on functorial images of  diagrams over A in one 
category B may be extended as follows. Let A, B, and C be three cate- 
gories with functors O: A ~ B and V: A ~ C and let a functor  ~,: B ~ C  
exist such that the diagram 

B 

A 

v /  .c 
q~ 

(35) 

commutes.  Then the functor ~, serves as a comparison for diagrams over 
A realized in the different categories B and C. (When B = C the situation 
is reducible to that before.) 

As an example, again let A be the AID category. In the beginning of  
our sequence of  papers on the phenomenological calculus the morphology 
R = aiFi and the DID of  the response tensor were suggested by those o f  
a radius vector r = eixi. Thus R and r are models of  each other. This 
modelling relation is represented by the functor  e~ between B = R and C = 

A 
Vect: oz-.  

Lii J g~J 
~ Xi 

Fi~a'F, R =a," / ~ / 
= P e i x l  = r = e / x /  

~ \ * . /  \ 
if~ f /  

P xJ 

e/ 

We shall return to other realizations of  the modelling relation shortly. 

(36) 

10. Pattern Generation. Rosen's (1981) note on a unified approach to 
pattern generation points out  the close relationship between the concepts 
of  abstract patterns and fibre bundles. A fibre bundle (E, B, X, p) consists 
of  a total space E, a base space B, a fibre X and a bundle projection p: E -+ B 
such that there exists an open covering { U} of  B and, for each U E { U}, a 
homeomorphism ~t: : U • X - + p - a ( u )  such that the composite 
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P~ : U X X ~ p-I(U) ~ U (37) 

is the projection on the first factor. In other words, the bundle projection 
and the projection B • X -~ B are locally equivalent. The fibre over b E B 
is Xb = P-l(b), and each X b is homeomorphic to X. Intuitively, one can 
think of  a fibre bundle as a union of  fibres X b for b E B, hence parametr- 
ized by B and 'glued together' by the topology of  the total space E. 

A cross-section of  a fibre bundle (E, B, X, p) is a map f:  B -~ E such that 
p ' f  = 1B. Thus a cross-section selects for every b E B a point f (b)  in the 
fibre Xb. Rosen's basic suggestion is that if the base space B is identified 
as the domain (of constitutive parameters) over which patterns are to be 
formed and the fibre X as the set of  states which may be assigned to each 
point of  that domain, then a pattern is obtained by selecting for each b E B 
one allowable state from X ~ Xb. This simply says that 'pattern' and 'cross- 
section' are the same concepts. Denoting the space of  all cross-sections 
(patterns) by P, we see that the problem of pattern generation is most 
appropriately formulated in the space P: a pattern-generating mechanism 
is a dynamics in P. 

The category R of  description spaces can be considered as the fibre 
bundle (E, (H*) m, H m, p), where E consists of  all dyadic response tensors 
of  the form R = aiFi with a t ~ H* and Fi E H, and p(R) = [al: i = 1 . . . .  , 
m}. For each m-tuple of  constitutive parameters {a t} E (H*) m the fibre 
X{a/} is the description space [ai]. It is clear that each X{d} is isomorphic 
to the fibre H m . When the isomorphism identification H ~ H* is made, 
we have the dual representation of  this fibre bundle 

(E, (H*) m, H m, p) ~- (E, H m, (H*) m, q), (38) 

with q(R = a/fi) = {aj) E I t  m. Note that p and q constitute the dual col- 
lection of projectors {1~i} and {0 i} in R-L-83. 

A pattern in the fibre bundle R is then a map �9 which picks for each 
{a i} a response tensor aiFi (hence an m-tuple {Ft} in the fibre/arm). It then 
becomes a similarity transformation 

~b: aiFi ~ ai'F; (39) 

for different constitutive parameters (a i} a nd  {ai'}. Further,  taking the 
duality (38) into account one immediately recovers the commutative dia- 
gram (34) above. A pattern-generating mechanism, formulated as a dynamics 

= ~ q~t} in the space of  cross-sections P, takes the form as in diagram (40) 
which completes the cycle and brings us back to diagram ( 1 ) of  an N-dynamics. 

11. Differemial Geometry o f  Proteins. A structural and dynamical re- 
presentation of  protein patterns is given in Louie and Somorjai (1982). The 
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aiF~(tl) ~ ~ airF[(tl) 

Tt,-t, I I (~T)q-t ,  

aiFi(t2) l , ai'F~(t2) 
r 

(n (n 

Xl.i~ Xl.i'l 

(40) 

primary structure of a protein molecule, its sequence of amino acids, can be 
described as a finite word over an alphabet of 20 letters. The higher-order 
(secondary, tertiary and quaternary) structures, on the other hand, are most 
appropriately described by the shape of a space curve (representing the 
protein backbone) lying on certain surfaces embedded in 11t 3 . 

The map which sends the primary sequences of proteins to their three- 
dimensional spatial structures can then be formulated as a cross-section 
of a fibre bundle. The base space is the genotype of proteins while the 
fibre is the phenotype. The molecular dynamics of proteins are best de- 
scribed as dynamics in the space of cross-sections (patterns) of this fibre 
bundle. 

Let {a i} be a finite word over the set of 20 amino acids, representing 
the genotype of a protein, and let {F~} be its phenotype, describing the 
shape of the backbone space curve of the protein. Then a similarly trans- 
formation between proteins is given by the map (39) and a pattern-generating 
protein dynamics is given by diagram (40). 

Since a space curve is uniquely determined by a pair of continuous func- 
tions (~, r), the curvature and torsion, the response tensor alFi admits the 
alternate description (~:, r). This yields the modelling relation (35) for the 
differential geometry of proteins: 

f protein ~ (41) 

R = aiFi ~ R = (~, r) 

Protein dynamics can also be studied in the framework of this alternate 
description, namely as a dynamics in the space of pairs of continuous func- 
tions (~, r). This is discussed in Louie and Somorjai (1983). 

Finally, this alternate description of proteins as pairs of continuous 
functions has useful implications in the study of enzyme-substrate recogni- 
tion. Recall (L-R-S-82) that an enzyme can be described by a function of 
bounded variation which acts as the integrator in a Stieltjes integral, in 
which a continuous function describing the substrate is the integrand. The 
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pair  (~:, r)  can be considered as a func t ion  o f  b o u n d e d  var ia t ion when  h: and 

r represent  the  curvature  and to rs ion  o f  an e n z y m e  b a c k b o n e  curve. Then  

the mechan i sm o f  e n z y m e - s u b s t r a t e  recogni t ion  is given by  the ope ra to r  

and represen ted  by  the diagram 

S E substra tes  ." 

f,v " d(~:, r)  (42) 

, = a F  E T ~ ( C ( K ) )  

T / 
~- a = (~,  r )  E N B V ( K )  

(43) 

e ~ enzymes  ." 

(cf. Figure 4 o f  L - R - S - 8 2 ) .  We shall discuss the above ideas and the differ- 
ential g e o m e t r y  o f  enzymes  in a f o r t h c o m i n g  paper.  

This  pape r  is dedicated to Dr. I. W. Richardson.  
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