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1. Introduction

During the past 50 years, the idea of connections linking systems and their components,

generating cycles that tie together components and systems in such a way that the

fragmentation of the system always implies loss of information, has been frequently

advanced. Tomention only some authors, Bateson, Capra, Hofstadter, Luhmann,Maturana,

Rosen, and Varela are advocates of this idea. These component–system connections form

whatwe shall call ‘hierarchical cycles’.When components pertaining to a hierarchical cycle

are separated from their system, they behave differently (and may have a different nature)

from the way in which those same components behave within their system.

Hierarchical cycles must be carefully distinguished from sequential (i.e. ‘horizontal’)

cycles. The latter are well represented by feedback and autocatalytic loops, where

elements of the same kind interact with each other. Nonlinear phenomena mostly rely on

sequential cycles.

Unfortunately, the above-mentioned scholars – with the remarkable exception of

Robert Rosen (in his subject known as relational biology) – do not usually distinguish as

sharply as necessary between sequential and hierarchical cycles. This unfortunate state of

affairs – quite typical, however, of newborn, still unfolding ideas – has contributed to

obscuring the scientific importance of hierarchical cycles.

Hierarchical cycles represent a substantial move towards a relational understanding of

systems. According to this perspective, many natural systems are relational systems over a

material basis. Nobody denies that an underlyingmaterial basis is needed. The real nature of

these natural systems, however, is not conveyed by their material basis. The claim implies

that living, psychological, and social systems are not properly understandable by studying

the ‘materials’ that happen to bear them or the physical environment in which they

happen to be embedded. This is not to deny that some information may derive from
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their material bases. The thesis instead claims that what is specifically living, psychological

or social of living, psychological, or social systems does not derive from their underlying

supporting bases.

One of the intriguing aspects of a system characterized by hierarchical cycles is

that the elements generating the system’s dynamical continuity may be different from the

elements composing the system’s material basis. We shall come back to this issue below.

Organisms,minds, and societies are systems able to outlive their elements – newelements

are born, others die off, yet others move from one system to another. All these modifications

notwithstanding, these types of systems showsomekindof stabilitywhich, for themostpart, is

independent of the continuous transformation of the set of their constituent elements.

The presence of hierarchical cycles dramatically constrains the modelling of the

relevant system. To mention but one single result, a system containing a hierarchical cycle

must have a non-simulable model, which implies that no simulable description of that

system will ever be complete. This result does not imply that there can be no model of

hierarchical cycles at all. There are plenty of useful algorithmic models, just with the

caveat that these will be, by definition, incomplete. They may nevertheless be fruitful

endeavours. One learns a tremendous amount even from partial descriptions.

This paper presents a few exemplifications of hierarchical cycles (aka impredicative

systems or self-referential systems), showing that they can be treated in a uniform way.

We shall collect data from the various scientific fields in which the idea of hierarchical

cycle has been proposed, namely, biology and cognitive and social sciences.

Other theoretical perspectives resembling the present proposal have been recently

advanced. Notable examples are memory evolutive systems by Ehresmann and

Vanbremeersch (2007) and the development of supercategories and higher order types

of complexity by Baianu et al. (2011). Both of them essentially rely on the power of

category theory and both of them develop, albeit in different ways, the idea of iterative

constructions of systems over systems in which the systems at different layers present

specific properties. In our approach, we emphasize the graph-theoretic aspects of category

theory, with the advantage that it is more visual than strictly abstract-algebraic methods.

2. Basic elements

In this section, we review some of the key concepts of relational biology to make this

paper (more or less) self-contained. For further details, the reader is invited to read the

bookMore Than Life Itself: A Synthetic Continuation in Relational Biology (Louie 2009).

2.1 Category theory

Category theory is a useful metalanguage in these discussions. For a simple and concise

introduction, one may consult the Appendix in Louie (2009).

A category consists of a collection of objects, and for each pair of objects A and B a

hom-set denoted by HðA;BÞ. A member of a hom-set is called a morphism. The general

framework assumes very little about the morphisms; they only need to be closed under

composition and include the identity morphisms. The category axioms are usually

interpreted within set theory, whence an object is a set with a prescribed structure and a

morphism is a mapping preserving this structure.

The category Set, in which the objects are sets (without any further requisite structure)
and the morphisms are mappings between sets, is the simplest example of a category.

A mapping f from A to B may, therefore, also be denoted as f [ HðA;BÞ. Note that the

hom-set HðA;BÞ only needs to represent a collection of mappings under consideration
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from set A to set B (but, of course, still satisfying the closure requirements in the category

axioms), and is not necessarily the collection of all mappings from A to B.

2.2 The modelling relation

ð1Þ

Figure (1) contains the components we need to describe what a modelling relation is

between a system S1 and a system S2. The crux of the matter lies in the arrows of the

diagram, which we have labelled w, c, a, and b. The arrows w and c represent entailment

in the systems S1 and S2, respectively. The arrow a is called the encoding arrow. It serves

to associate features of S1 with their counterparts in S2. The arrow b denotes the inverse

activity to encoding; namely, the decoding of features of S2 into those of S1.

The arrows a and b taken together thus establish a kind of dictionary, which allows

effective passage from one system to the other and back again. However, we may remark

here on the peculiar status of the arrows a and b. Namely, they are not a part of either

systems S1 or S2, nor are they entailed by anything either in S1 or in S2.

A modelling relation exists between systems S1 and S2 when there is a congruence

between their entailment structures. The vehicle for establishing a relation of any kind

between S1 and S2 resides, of course, in the choice of encoding and decoding arrows, the

arrows a and b. A necessary condition for congruence involves all four arrows, and may

be stated as ‘whether one follows “path w” or “paths a;c;b in sequence”, one reaches the

same destination’. Expressed as composition in mathematical terms, this is

w ¼ b +c +a: ð2Þ

Encoding and decoding maps have certain inherent properties; we shall illustrate using

the encoding arrow a. Let f : X ! Y be a mapping representing a process in the entailment

structure of the arrow w in S1. Consider a mapping g : aðXÞ! aðYÞ (which is a process in

the entailment structure of the arrow c in S2) that makes the diagram

ð3Þ

commute (which means for every element x in X, whether it traces through the mappings f

followed by a, or through a followed by g, one gets the same result in aðYÞ; i.e. the equality

a f ðxÞ
� �

¼ g aðxÞð Þ ð4Þ

holds for all x [ X). Note that this commutativity condition so far places no further

restrictions onmapping g itself, other than that it needs to reach the correct final destination.
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The mapping g, however, must also itself be entailed by the encoding a, i.e.

g ¼ aðf Þ; ð5Þ

whence the mapping in S2 is aðf Þ: aðXÞ! aðYÞ. Then one has the commutative diagram

ð6Þ

and the equality corresponding to (4), for every element x in X, is

a f xð Þ
� �

¼ a f
� �

a xð Þð Þ: ð7Þ

It is only when this more stringent condition (7) is satisfied that one has a true modelling

relation between systems S1 and S2. One then says that there is a congruence between their

entailment structures, and that S2 is a model of S1.

Category theory may be regarded as a general theory of modelling relations. The kind

of congruence (7) between entailment structures is defined by the mathematical entity

called functor. Stated otherwise, encoding is a functor a from category S1 to category S2:

ð8Þ

2.3 Relational diagram

A relational diagram in graph-theoretic form is a representation of interconnected

processes in a way that emphasizes the different roles played by different components of

the mappings. For a simple mapping f : A! B (i.e. f [ HðA;BÞ) in its element-chasing

version f : a 7! b (where a [ A and b [ B), its relational diagram may be drawn as a

network with three nodes and two directed edges, i.e. a directed graph (or digraph for

short):

a bf ð9Þ

The hollow-headed arrow denotes the flow from input (material cause) a [ A to output

(final cause) b [ B, whence the final cause of the mapping may be identified also as the

hollow-headed arrow that terminates on the output

b ð10Þ

The final cause, output of a mapping, is that which is entailed.
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The solid-headed arrow denotes the induction of or constraint upon the flow by the

processor (efficient cause) f, whence the efficient cause of the mapping may be identified

also as the solid-headed arrow that originates from the processor

f ð11Þ

The formal cause of the mapping may be identified as the ordered pair kprocessor; flowl of
the two kinds of arrows:

ð12Þ

Relational diagrams of mappings may be composed. For example, consider the two

mappings f [ HðA;BÞ and g [ HðX;AÞ: the codomain of g is the domain of f. Thus

X A B ·
fg ð13Þ

Let the element chases be f : a 7! b and g : x 7! a: the final cause of g is the material

cause of f. The relational diagrams of the two mappings connect at the common node a as

g f

b
a

x

ð14Þ

This sequential composition of relational diagrams represents the composite mapping

f + g [ HðX;BÞ with f + g : x 7! b, and has the abbreviated relational diagram

f°g

bx

ð15Þ

Note that in this diagram (15) for the single efficient cause f + g, both efficient causes f and

g, as well as the (final) final cause b, are accounted for.

Now consider two mappings f [ HðA;BÞ and g [ HðX;HðA;BÞÞ. The mapping g

takes an element in X and sends it to an image which is another mapping, one with domain

A and codomain B; in short, the codomain of g contains f. Because of this ‘containment’,

the mapping gmay be considered to occupy a higher hierarchical level than the mapping f.

Let the element chases be f : a 7! b and g : x 7! f : the final cause of g is the efficient

cause of f. (In particular, the mapping f is entailed.) Then one has the hierarchical
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composition of relational diagrams

ba

fx

g

ð16Þ

A comparison of the two graphs (14) and (16) shows that sequential composition and

hierarchical composition are different in kind: they are different both formally and in content.

Although diagrams (16) may contract into something similar in form to (15), namely

g(x)

ba

ð17Þ

in this abbreviated form, the entailed efficient cause f becomes ‘hidden’. Since the

accounting (and tracking) of all efficient causes in an entailment system is crucial in our

understanding of hierarchical cycles, one needs to preserve every solid-headed arrow. So

there will not be any abbreviation of hierarchical compositions.

2.4 Sequential cycle

The mappings in a relational diagram may compose in such a way that a closed path, i.e. a

cycle, is formed. (Note that a closed path in the directed graph sense means the arrows

involved have a consistent direction.) When the compositions involved in the closed path are

all sequential, one has a sequential cycle. This cycle consists of hollow-headed arrows

entirely, with peripheral solid-headed arrows. In this cycle, all those entailed are material

causes; it is, therefore, a closedpathofmaterial causation. For example,when threemappings

have a cyclic permutation of domains and codomains,

f [ HðA;BÞ; g [ HðB;CÞ; h [ HðC;AÞ; ð18Þ

their sequential compositions result in

b

f

a

c

g

h

ð19Þ
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The three mappings compose to

h + g + f : A! A; ð20Þ

which may, depending on the emphasis, be interpreted as the automorphism

a ø h + g + f ðaÞ; ð21Þ

the identity mapping

h + g + f ¼ 1A [ HðA;AÞ; ð22Þ

or the fixed point a of the mapping h + g + f ,

h + g + f ðaÞ ¼ a: ð23Þ

Cyclic permutation of the three mappings also gives

f + h + g : B! B ð24Þ

and

g + f + h : C ! C; ð25Þ

with the corresponding automorphism, identity mapping, and fixed point interpretations in

their appropriate domains.

It is easy to see that the number of mappings involved in a closed path of material

causation may be any finite number (instead of three in the example), and the above

discussion may be extended accordingly. Thus, a closed path of material causation is

formally analogous to the simple relation diagram with a self-loop

ð26Þ

If a relational diagram either contains no closed paths or when the only closed paths are

sequential cycles, it is inherently simple, in contrast to those that contain another kind of

cycles that is our next topic.

2.5 Hierarchical cycle and its properties

When two or more compositions involved in the cycle are hierarchical, one has a closed

path of efficient causation. (A closed path with exactly one efficient cause is an

exceptional case which need not concern us here. Interested readers may consult Section

6.15 in Louie 2009.) In other words, a closed path of efficient causation is an entailment

cycle that contains two or more efficient causes. Both the hierarchy of containment and the

cycle are essential attributes of this closure.

For example, consider three mappings from a hierarchy of hom-sets,

f [ HðA;BÞ; g [ H C;HðA;BÞ
� �

; h [ H D;H C;HðA;BÞ
� �� �

: ð27Þ
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Their hierarchical compositions form the relational diagram

a b

c

d g

f

h

ð28Þ

Now suppose there is a correspondence between the sets B and HðD;HðC;HðA;BÞÞÞ – the

many ways to achieve this correspondence are explicated in Louie (2009), in particular, in

Chapters 6, 11, and 12. Then, an isomorphic identification between b and h may be made,

and a cycle of hierarchical compositions results:

g

a

h
f

cd

ð29Þ

Formally, we have the following definition.

Definition. A hierarchical cycle is the relational diagram in graph-theoretic form of a

closed path of efficient causation.

Note that in a hierarchical cycle (for example, arrow diagram (29)), there are two or

more solid-headed arrows (since a closed path of efficient causation is defined as a cycle

containing two or more hierarchical compositions). Since a hierarchical cycle is by

definition the formal-system representation (i.e. encoding) of a closed path of efficient

causation in a natural system, trivially one has the following:

Lemma. A natural system has a model containing a hierarchical cycle if and only if it has a

closed path of efficient causation.

Because of this equivalence of a closed path of efficient causation in a natural system

and a hierarchical cycle in its model, the term hierarchical cycle, although defined for

formal systems, sometimes gets decoded back as an alternate description of the closed path

of efficient causation itself. In other words, one may speak of a hierarchical cycle of

inferential entailments as well as a hierarchical cycle of causal entailments. Thus,

‘hierarchical cycle’ joins the ranks of ‘set’, ‘system’, etc., as words that inhabit the realms

of both natural systems and formal systems.

Just as sequential composition and hierarchical composition are different in kind, so

are sequential cycle and hierarchical cycle. Because of this in-kind difference between

the two types of cycles, a sequential cycle may also be referred to as a ‘horizontal cycle’
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or a ‘flat cycle’ to emphasize its non-hierarchical characteristic. A hierarchical cycle has

many interesting mathematical properties and, therefore, by extension a natural system N

that contains a closed path of efficient causation has the realizations of these properties.

Among the many properties of a natural system N that contains a closed path of

efficient causation are the following (See Chapter 7 of Louie 2009 for details.):

1. N does not have a largest model.

[The largest model (if it exists) is the greatest element in the lattice of models,

which implies that every model is its submodel.]

2. Not every property of N is fractionable.

[A property of a natural system is fractionable if the natural system can be separated

into two parts modelled by disjoint direct summands, such that the property is

manifest in one of these parts.]

3. There exist models of N that are not simulable.

[A model is simulable if every process is definable by an algorithm.]

4. N is an impredicative system.

[Indeed, the containment of a closed path of efficient causation may be used as a

definition of impredicativity – our next topic.]

2.6 Impredicativity

In logic, the predicate is what is said or asserted about an object. It can take the role as

either a property or a relation between entities. Contrariwise, a definition of an object is

said to be impredicative if it invokes (mentions or quantifies over) the object itself being

defined, or perhaps another set which contains the object being defined. In other words,

impredicativity is the property of a self-referencing definition. (For a formal definition of

impredicativity, see Chapter 8 of Louie 2009.)

As an example, consider the definition of supremum. Let# be a partial order on a set X

and let A , X. The subset A is bounded above if there exists x [ X such that a # x for all

a [ A; such x [ X is called an upper bound for A. An upper bound x for A is called the

supremum for A if x # y for all upper bounds y for A. Stated otherwise, x ¼ supA ,

x # y for all y [ Y ¼ {y [ X : y is an upper bound for A}. Note that the definition invokes

the set Y and the supremum x [ Y , whence the definition of ‘supremum’ is impredicative.

Impredicative definitions usually cannot be bypassed, and are mostly harmless. But,

there are some that lead to paradoxes. The most famous of a problematic impredicative

construction is Russell’s paradox, which involves the set of all sets that do not contain

themselves: {x : x � x}. This foundational difficulty is only avoided by the restriction to a

naive set-theoretic universe that explicitly prohibits self-referencing constructions. This

implies reducing acceptable mathematical constructions to recursive procedures only –

i.e. to algorithmic or rote procedures. There is much in mathematics that goes beyond this

severe delimitation.

2.7 Complex and clef systems

Hierarchical cycle is used in the definitions of two important classes of systems:

‘complex systems’ and ‘systems that are closed to efficient causation’.

Definition. A natural system is complex if and only if it has a model that contains a

hierarchical cycle.
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Note that this only requires the existence of a hierarchical cycle that contains two or

more processes. There may be many processes in the model that are not part of hierarchical

cycles.

Definition. A natural system is closed to efficient causation if its every efficient cause is

entailed within the system.

In Chapter 6 of Louie (2009), the following two important properties of a natural

system are proven to be equivalent:

(a) its every efficient cause is entailed within the system and

(b) it has a model that has all its processes contained in hierarchical cycles.

Stated otherwise, in a closed-to-efficient-cause system, all processes are involved in

hierarchical cycles. Thus, the class of systems that are closed to efficient causation forms a

proper subset of the class of complex systems (which are required to have only some

processes involved in hierarchical cycles). Because of this containment, a closed-to-

efficient-cause system may be considered a ‘higher order complex system’.

Instead of the verbose ‘closed-to-efficient-cause system’ or ‘systems that are closed to

efficient causation’, we would like to introduce a new term ‘clef system’ (for closed to

efficient causation) with the following definition.

Definition. A natural system is clef if and only if it has a model that has all its processes

contained in hierarchical cycles.

The word ‘clef’ means ‘key’; so this terminology has the added bonus of describing the

importance of the class of clef systems.

There are different families of these clef systems that are of ‘higher order’ than

complex systems. Three of them will be exemplified in this paper, namely living,

psychological, and social systems. Note that in Chapter 11 of Louie (2009), natural

systems with a model containing all the processes in hierarchical cycles is shown as the

defining property of a living system. Since in this paper we are considering also

psychological and social systems, we are using the less restrictive new name of clef system

in its stead.

Although we shall not discuss here in detail whether clef systems are organized into

different layers of higher order complexity (e.g. in the way in which Baianu et al. (2011)

distinguish between super- and hyper-complexity), at least one basic comment may prove

helpful. In fact, the difference between living, psychological, and social systems can bemade

more explicit by resorting to the theory of levels of reality. The main distinction here is

between ‘material’, ‘psychological’, and ‘social’ levels of reality, the ontological categories

that are embedded within them and the relations of dependence and independence among the

different levels of reality (for details, see Poli 2001, 2006a,b, 2007). Subsequently, the

distinction is needed among the various sublevels, such as the physical, chemical, and

biological sublevels of the material level, or the economical, political, and legal sublevels of

the social level. Leaving apart many details, the only information that is presently needed is

the difference between living systems from one side and psychological and social systems

from the other side. Living systems pertain to the material level of reality, whereas

psychological and social systems are not material systems. The expression ‘system over a

material basis’ acquires then two different specifications: a living system is a system over a

physico-chemical basis, whereas mind and society are systems over biological systems,

respectively, over the brain and thewhole individual organism. This difference contributes to

the idea that clef systems, presenting a higher order kind of complexity, may be organized
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accordingly into different layers of higher order complexity. We leave a more articulated

discussion of this issue for another occasion.

3. An early trial

For an early view on hierarchy, here is what von Bertalanffy (1968) wrote:

An Informal Survey of Main Levels in the Hierarchy of Systems. Partly in pursuance of
Boulding (1956).

This survey is impressionistic and intuitive with no claim for logical rigour. Higher levels as a
rule presuppose lower ones (e.g. life phenomena those at the physico-chemical level, socio-
cultural phenomena the level of human activity, etc.); but the relation of levels requires
clarification in each case (cf. problems such as open system and genetic code as apparent
prerequisites of ‘life’; relation of ‘conceptual’ to ‘real’ systems, etc.). In this sense, the survey
suggests both the limits of reductionism and the gaps in actual knowledge.

Level Description and examples Theory and models

Static structures Atoms, molecules, crystals, biological
structures from the electron-micro-
scopic to the macroscopic level

E.g. structural formulas of chemistry;
crystallography; anatomical descrip-
tions

Clock works Clocks, conventional machines in
general, solar systems

Conventional physics such as laws of
mechanics (Newtonian and
Einsteinian) and others

Control mechanisms Thermostat, servomechanisms,
homeostatic mechanism in organisms

Cybernetics; feedback and
information theory

Open systems Flame, cells, and organisms in general (a) Expansion of physical theory to
systems maintaining themselves in
flow of matter (metabolism).
(b) Information storage in genetic
code (DNA).
Connection of (a) and (b) presently
unclear

Lower organisms ‘Plant-like’ organisms: increasing
differentiation of system (so-called
‘division of labour’ in the organism);
distinction of reproduction and
functional individual (‘germ track and
soma’)

Theory and models almost lacking

Animals Increasing importance of traffic in
information (evolution of receptors,
nervous systems); learning;
beginnings of consciousness

Beginnings in automata theory
(S-R relations), feedback (regulatory
phenomena), autonomous behaviour
(relaxation oscillations), etc.

Man Symbolism; past and future, self
and world, self-awareness, etc., as
consequences; communication by
language, etc.

Incipient theory of symbolism

Socio-cultural
systems

Populations of organisms (humans
included) symbol-determined
communities (cultures) in man only

Statistical and dynamic laws in
population dynamics, sociology,
economics, possibly history.
Beginnings of a theory of cultural
systems.

Symbolic systems Language, logic, mathematics,
sciences, arts, morals, etc.

Algorithms of symbols (e.g. mathe-
matics, grammar); ‘rules of the game’
such as in visual arts and music
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According to the distinction between systems with horizontal cycles and systems

with hierarchical cycles, the first three classes of the table are prevalently characterized

by horizontal cycles and all the others by hierarchical cycles. This already shows that

hierarchical cycles are more spread than one may naively believe. Some entries in the

table appear to be imperfectly described, however – for instance, ‘biological structures’

in the first class above. Similarly, we have doubts about the consistency of the open

systems class in the sense that flames present a type of complexity different from the

complexity of organisms: a flame is indeed characterized by horizontal cycles, whereas

organisms need hierarchical cycles. There are problems with the last class too.

The entries there are described as if horizontal cycles were sufficient for them

(algorithms) whereas none of them can be properly modelled within the boundaries of

horizontal cycles only.

4. Relational methodology

To illustrate the relational modelling strategy, we shall first present and discuss two

preliminary cases and analyse them on one level only. The two cases are the interaction

between two cells and the body–brain connection.

4.1 Interactions between two cells

Let us consider a very simple ‘organism’ consisting of two cells interacting with each

other, thus:

Cell 1 Cell 2

Interactions

ð30Þ

All processes are contained in hierarchical cycles; thus the relational diagram (30) models

a clef system L. (In this case, a ‘living system’; see discussion in Section 2.7.) Each of cells

1 and 2 is a ‘suborganism’ of L, since each is a hierarchical cycle.

If we were to fractionate (30), we may obtain

Cell 1

Cell 2

Disconnected
processes

ð31Þ

Then, we end up with two living cells, and two disconnected processes.
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Alternatively, if the fractionation happens thus:

Disconnected
process

Cell 1

Cell 2 with
incident process

ð32Þ

then, cell 1 is a clef system whereas cell 2, with an out-of-cycle process, but contains a

hierarchical cycle, is a complex system. (See definitions in Section 2.7.)

Many other modes of fractionation are possible; for example,

Remnant of
cell 1

Cell 2 with
export process

Isolated
processes

ð33Þ

In this case, the fractionation kills cell 1, whereas cell 2 with the export process remains

complex.

4.2 The body and the brain

The brain can arguably be considered an organism in its own right, or at least a ‘suborganism’

of the larger organism to which it belongs. Perhaps the ‘interacting organisms’ idea from

Louie (2010) may be used here, and one can formulate a theory in which the brain (or the

central nervous system) and the rest of the body are in a symbiotic relationship.

Now, suppose we consider the living system L in (30) and let cell 2 represent ‘brain’.

Diagram (30) is topologically equivalent to

Cell 1 =
rest of body

Cell 2
= brain

Interactions

ð34Þ
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which is a graphic representation of the fact that the brain is a suborganism of L.

The ‘brain’ may be fractionated as an independent organism as in (31). It may be the case

that fractionation (32) is a more accurate model, in the sense that an isolated brain is a

complex system, but not a living system on its own.

Note that there are no topological difficulties in having ‘cycle-within-cycle’, and no

problems with finding different hierarchical ‘subcycles’ in an ‘overall hierarchical cycle’.

What we have drawn are very simple-minded diagrams, of course; but they seem to

already capture the essence of the issues at hand. The conclusion is that there are no

problems with having a hierarchy of hierarchical cycles (e.g. cells forming a multicellular

organism – both levels are living systems). When we fractionate a larger living system

into smaller ones, however, some interactions among the smaller ones may be lost.

5. Parts and wholes

Given that impredicative systems – i.e. systems containing hierarchical cycles – do not

admit maximal models, we propose to analyse impredicative systems through the

reconciliation of two alternate descriptions of an impredicative system S, a ‘join of parts’_P

(in which at least one part P is already an impredicative system) and a ‘whole’W. Both _P

and W are categories. The two categories _P and W have different objects and morphisms,

but describe the same impredicative system S in different modes. The relationship

(or interactions) between the two alternate, non-equivalent descriptions is then functors

between the two categories. The situation is, of course, the following modelling relation:

Encoding
functor e

Decoding
functor d

Join of
parts ∨P

Whole W ð35Þ

In the functorial representation (cf. (8) above), we have

ð36Þ

where

_P: join of parts; objects ¼ X,Y ; morphisms ¼ w [ _P X; Y
� �

W: whole; objects ¼ 1ðXÞ, 1ðYÞ; morphisms ¼ 1ðwÞ [ Wð1ðXÞ; 1ðYÞÞ
1: encoding functor
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5.1 Examples

For a simple, ‘everyday’ example, one may consider

S: system ¼ house

_P: objects ¼ materials (bricks, wood, etc) used to build up the house; morphisms ¼

the arrangement of the materials

W: objects ¼ kitchen, dining room, etc.; morphisms ¼ the arrangement of the various

rooms

1: assemblage of the materials into functional units

Although this exemplification is trivial, it is helpful for illustrative purposes. It serves as a

guide for the reader to develop an understanding of the suggestedmethodology; it also helps

in showing that no one-to-one connection between _P objects and W objects is implied.

Another way to interpret our _P versus W description of systems is in terms of the

dichotomy of structure versus function, with _P expressing the structural and W

expressing the functional subsystems of system S. This dichotomy is evident in the

psychological and social system examples below.

Next, let us give a mathematical exemplification. The power set functor P : Set! Set

assigns to each set X its power set PX (i.e. the collection of all subsets of X), and assigns to

each mapping f : X ! Y the mapping Pf :PX ! PY that sends each A , X to its image

f ðAÞ , Y . One readily verifies that this definition satisfies the functorial requirements

P(g + f)¼P(g) +P( f) (the mapping that sends a subset A of the domain of f to the subset

gðf ðAÞÞ of the codomain of g) and P1X ¼ 1PX (the identity morphism gets sent to the

identity morphism), so P is a covariant functor from Set to Set.

Now, the entities ‘kX; f l’ and ‘kPX,Pfl’ are two alternate descriptions of the same system

‘X’. The mapping f : X ! Y maps on the ‘element level’ (i.e. parts): for each a [ X it

assigns an imagewhich is an element f ðaÞ [ Y . ThemappingPf : PX ! PYmaps on the ‘set

level’ (i.e. whole): for each subset A , X it assigns an image which is a subset

Pf ðAÞ ¼ f ðAÞ , Y .

ð37Þ

S: system ¼ category Set

_P: set as a collection of elements: X ¼ {a : a [ X}; objects ¼ X,Y; morphisms ¼

f [ HðX; YÞ
W: set as lattice of subsets: X ¼ sup{A : A , X} ¼

S

A[PX

A; objects ¼ PX,PY ;
morphisms ¼ Pf [ H(PX,PY)

1: power set functor P : Set! Set

6. Another biologically oriented exemplification

Let us consider another biological example, the phenotype–genotype duality, in some

detail. System S here is the genetic entity that is an organism, the corresponding _P-to-W
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modelling relation is:

Encoding
functor e

Decoding
functor d

PhenotypeGenotype ð38Þ

Phenotype is effect, whereas genotype is source. They are dual characteristics that define

organisms (any living system in general). The precise formulations of the functors, 1 and

d, are of course major problems in genetics, indeed in all of biology. A big question is

‘How does genotype determine phenotype?’ – the search for the links between the

two sides.

Genotype and phenotypes are non-equivalent descriptions of a living system.

A ‘metric’ in the space of genotypes is ‘closely related’; a ‘metric’ in the space of

phenotypes is ‘similar’. D’Arcy Thompson’s work may be grossly summarized as ‘closely

related organisms are similar’ – the encoding functor 1 then becomes a mapping that

‘preserves’ the metric structure of the spaces; i.e. a morphism in the (subcategory of metric

spaces of the) category Top (of topological spaces). A converse question may be posed:

‘Are similar organisms closely related?’. In biology, the general answer is no; so the

decoding functor d is not a Top-morphism.

Mendel first began the science of genetics as the study of phenotypes. Molecular

biologists have, of course, since hijacked the subject into the study of genotypes.

This ‘substitution’ is the very example of reductionism. A specific example is the

protein-folding problem, where genotype is the primary sequence, and phenotype is

(the active sites on) the native state. Reductionism is especially rampant here when the

search is commonly for algorithmic realizations of the encoding functor 1. It is little

wonder that after decades of efforts, the ‘protein-folding algorithm’ searcher has not

been successful.

The above discussion may be summarized thus: genetics of organism

_P: genotype; objects ¼ genes; morphisms ¼ ‘closely related’

W: phenotype; objects ¼ physiognomy; morphisms ¼ ‘similar’

1: genetic code

7. The brain–mind connection

The connection between brains and minds does not appear to follow the kind of

connections that were, respectively, used for the two-cells and the organism-brain

examples (which proved to be topologically analogous). The main problem is that

there is a difference between connections among systems of the same nature (such as

cells or more generally biological entities) and connections between systems of

different nature, such as a biological system (brain) and a psychological system (mind).

Minds and their biological bearers are, respectively, ‘made’ of different materials.
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For this reason, the answer appears to be different in kind from the suborganism

approach of the brain–body problem. Here is where the alternate description strategy

shows its capacity. The standard representation of an organism emphasizes the

‘biochemical’ (or ‘physiological’) aspects of metabolism-repair-replication. A ‘brain’

may conceivably be represented this way, as a ‘neuronal organism’. The processes of

the ‘mind’, on the other hand, presumably are not reducible to biochemical or

physiological ones. So a hierarchical-cycle representation of the mind would involve

completely different maps – let us call them ‘psychic maps’ for now, for lack of a

better term. So, the mind–brain problem may then perhaps be formulated in category

theory as the search for functors between the ‘neuronal map hierarchical cycle’ model

of the brain and the ‘psychic map hierarchical cycle’ model of the mind. The following

diagram presents the main idea:

Encoding
functor e

Decoding
functor d

Brain Mind ð39Þ

‘Mind’ and ‘brain’ are each hierarchical cycles in their own right, but with entirely

different sets of maps. In ‘brain’, the maps are more akin to the ‘regular’ type of

biochemical and physiological efficient causation, whereas the nature of the maps in

‘mind’ will be determined in Section 8.

When different systems are based on widely different types of elements (such as

neurons and thoughts), they do not share a common code and, therefore, do not

‘understand’ each other. The exchanges that occur between them take the form of

perturbations. In this sense, different systems perturb one another. Each system has its

own internal dynamics and generates its own contents. They influence each other not in the

form of a direct exchange of information (for the just-mentioned lack of a common code),

but as ‘disturbances’ that the receiving system interprets in its own way. (The same

observation can be repeated for other types of structurally coupled systems; one may add

that social systems perturb psychological systems, and vice versa, see below.)

According to the two-sided model we are exploiting, the mind-brain problem can then

be deciphered as follows:

_P: brain; objects ¼ neurons; morphisms ¼ neuronal pathways

W: mind; objects ¼ contents; morphisms ¼ thoughts

1: perturbation (in the sense above explained)

8. Psychologically oriented exemplifications

We shall distinguish between ‘presentations’ and ‘representations’. Presentations form

what is usually called stream of consciousness, specious present or moment now.
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They concern the basic temporal structure of our conscious life. (Immediate) perceptions

are the most well-known cases of presentations.

Experimental data show that the following are some of the basic features of

presentations (Poli 2006a,b):

1. Presentations last from 200 to 3000ms ca. On average, they last approximately

700ms.

2. The duration of presentations depends on a variety of factors, ranging from the

subject’s mood feelings (they are shorter when the subject is excited and longer

when she/he is relaxed) to the cognitive state of the subject (attention shortens

presentation), to the content of what is presented, etc.

3. Presentations come with an inner organization, on various dimensions. Of these the

most important are (a) the distinction between focus and periphery, (b) the presence

of internal laws of organization, and (c) the elaboration of their content in

subsequent stages. Point (a) entails that there are upper limits to the complexity of

the correlate in the focus. Point (b) yields possibly most surprising results, namely

the laws of temporal and spatial inversion (Benussi 1913). Point (c) claims that

presentations themselves have a temporal structure (Albertazzi 2003).

4. Presentations come in a (temporal) series, often called stream of consciousness.

Presentations provide the stuff (the objects) to be further elaborated by subsequent

higher order cognitive acts (e.g. reasoning, imagery, fantasy, and (reactualized) memory).

This second level is termed the level of representations. These are produced syntheses

based on series of presentations. Most recent research on the mind has mainly concerned

itself with representations, leaving apart the level of presentation. For this reason, we shall

focus here on presentations.

Every psychological act is a threefold entity: it has a source, a target, and a body.

The ego is the source of the act, the object is its target, and what connects the ego with the

object is the body of the act. The basic structure of an intentional act is thus:

Source: Ego Target: Object
Body

ð40Þ

The body and the target of acts are internally linked to one another: for every seeing

there is something that is seen, for every thinking there is something that is thought, for

every feeling there is something that is felt, etc. The act’s objects are internal, not external,

objects.

Figure (40) depicts only a minimal part of the real structure of an act. A more

satisfactory representation should for instance distinguish the different elements of the

ego. At least three components (or substructures) of the ego can accordingly be

distinguished: ‘pure ego’, ‘individual ego’, and ‘self.’

The pure ego is an entirely functional component which in itself does not possess any

independent properties. The only feature characterizing the pure ego is that of being the

point of origin of intentional acts. In this sense, the pure ego is always present – by

definition – in every intentional act. Unlike the pure ego, the individual ego is not

exclusively functional. Finally, the self is the public side of the ego, the one that articulates

itself in the perception that the subject possesses of the roles that it embodies. The self has

mainly to do with forms of socialization (see Poli 2009 for details).

Decomposition of the ego into the three components of pure ego, individual ego and

self makes it possible to ‘filter’ the intentional act in different ways according to the source
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or sources concerned, giving a more realistic structure of the intentional act:

Intentional act

Pure ego

Individual ego Self

Object

Ego

ð41Þ

In the reality of a completed intentional act, the pure ego, the individual ego, and the

self are all involved, and each makes its contribution. The composition of the various

arising triangles depends in its turn on the composition of the three sides of the ego, that is,

of the triangle: Pure ego–individual ego–self.

Motivation is defined as passage from act to act. This provides a graphical representation

of the idea:

Intentional act 2
Ego Object

Intentional act 1
Ego Object

Motivation ð42Þ

Motivations unfold according to rules. In this regard, Husserl distinguished between

the external and internal horizons of psychological acts. External horizon deals with

everything else contemporaneously happening in the field of consciousness. Given a

thought, external horizon may move attention

1. from the object to its origins,

2. from the object to its future potentialities (anticipation),

3. from the object to other objects close to it (spatio-temporal continuity), or

4. from the object to similar objects (resemblance).

Internal horizon, on the other hand, moves attention from a given object to its structures.

Given a thought, internal horizon moves attention

1. from the genus to its species (specify) or

2. from the species to its genus (generalize).

Although there are other more complex cases, those listed suffices as a first approximation.

Given the decomposition of the ego into the three aspects of pure ego, empirical ego

and self, we can redraw diagram (42) to account for the complexity of the ego,
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a decomposition of motivation as shown in the following:

Ego_1 Pure ego

Individual
ego

Self

Object

Ego_2 Pure ego

Individual
ego Self

Object

Identity

ð43Þ

The link between the two pure egos is the link of identity, for obvious reasons. On the

other hand, there is no reason to think that links between all the other components of

diagram (43) are identity links. This almost geometrical way of analysing the internal

structure of intentional acts and motivations as links between acts (and their components)

may help shed light on these very complex topics.

Leaving geometric considerations aside, let us return to the crux of our problem. What

exactly is meant by saying that motivation is the passage from one act to the following

one? The idea is that the ego performs a certain act because – on the basis of the fact that –

another act has been performed. When I see a thing, I see only one side of it; I may circle

around it to see the other sides as well: belief in a certain state of affairs may motivate

belief in another state of affairs connected with it; espousing a value may motivate a

stance, an act of will, an action. Motivation operates for every type of act, perceptive,

evaluative, emotional. I see something beautiful and I feel pleasure at such beauty. All the

aspects are involved: perception, recognition, evaluation, and stance taking.

Motivation has a complex structure and we have only scratched its surface. We have

seen that both the ego and the object sides of psychological acts play a role in the

architecture of motivation. By way of a final summary, the multifaceted articulation of the

ego unfolds its own object, which in its turn the object of the act activates the possible

ways in which acts follow one another.

The most general structure of the mind can then be captured by the following model:

_P: Presentation; objects ¼ (psychological) acts; morphisms ¼ motivation (i.e. the link

between a previous act and the subsequent one, following the rules explained

above)

W: Representation; objects ¼ subsystems (memory, attention, decision, etc.);

morphisms ¼ semantic relevance

1: functional closure over presentations (need for completion, either assimilative or

additive)

9. Socially oriented exemplifications

We have already said that social systems are systems able to outlive their members. This

problem is called the ‘reproduction’ of a social system. The most obvious answer to the

problem of the reproduction of social systems has been provided by Pareto: the reproduction

of a social system (its temporal continuity) is brought about by the reproduction of the

individuals that happen to make up the system. As obvious as this answer appears,
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it nevertheless raises a problem. In fact, it was Parsons who realized that the reproduction of

individuals cannot be assumed as a properly sociological category. Although the

reproduction of individuals can be seen as a socially conditioned problem as one wishes, it

nevertheless remains an essentially biological affair. In order to avoid reducing social

problems to biological problems, and in order to answer the question of the reproduction of a

social system satisfactorily, one must find an authentically social type of reproduction.

Parsons’ answerwas that the reproduction of a social system is provided by the reproduction

of its (social) roles, i.e. by the reproduction of the patterns of action which are typical of that

system. The reproduction of a social system is, therefore, the higher order outcome of the

reproduction of roles (patterns of action). This answer gives a much firmer basis to social

theory. This is not the end of the story, however. Luhmann later came to realize that roles or

patterns of action are themselves in need of a firm basis, because roles are implementations

of perspective points, interests, values, and – more generally – of meanings. In its turn, the

reproduction of roles implies the reproduction of their meanings. In short, the reproduction

of a social system is grounded in the reproduction of meaning (Poli 2010).

The second important outcome arising from the series of the three theories we are

considering is connected to the question of the basic units of a social system. The question

is, Of what is a social system made? Or, What are the elements that make up a social

system? The question is much less trivial than it appears. Pareto’s answer is the less

surprising one: a social system is composed of individual human beings. Agents are the

system’s units of reproduction. Parsons’ answer, instead, is that roles are the units of a

social system, not agents. Luhmann continues along the path opened by Parsons by adding

meanings as the units of reproduction of roles.

The proposals of Parsons and Luhmann represent substantial moves towards a

dematerialization of social systems. According to both Parsons and Luhmann, social

systems are non-material systems; they are relational systems over a material basis.

Neither of them denies that an underlying material basis is needed. The real nature of a

social system, however, is not conveyed by its material basis. There is no way to

understand what distinguishes social systems from other kinds of systems by studying the

biological entities that happen to bear them or the physical environment in which they

happen to be embedded. The thesis claims that what is specifically social of social systems

does not derive from other types of systems, biological or physical. In other words, social

systems are higher order systems organized in such a way that their reproduction is

governed by the reproduction of properly social units and not by the reproduction of the

units that characterize their underlying material bases. The reproduction of a social system

requires authentically social units of reproduction. Once a material basis has somehow

been given, the reproduction of the higher system does follow its own relational laws.

Without this theoretical move, sociology cannot be constituted as a science.

Following Luhmann, here is a first trial for contemporary society: social system

_P: objects ¼ communications; morphisms ¼ continue the communication

W: objects ¼ functional subsystems; morphisms ¼ perturbations among them

1: functional closure over communications

Communications are three-parted acts based on information, utterance, and

understanding. Information is the selection of what has to be communicated, utterance

is the how of the communication, and understanding refers to what the receiver grasps

from the previous two aspects of a communication. None of the three components on its

own is a communication. Only the three components together form a communication,

which implies that a communication can never be attributed to any one individual
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(Seidl 2005, p. 29). Communications are from the very beginning social acts, for the

simple reason that an act of communication requires both a speaker and a listener.

Communications come in series, one after the other, and form systems of communication.

In Luhmann’s words: ‘As soon as any communication whatsoever takes place among

individuals, social systems emerge’ (Luhmann 1982, p. 70).

Structurally different types of communications form different structural subsystems

within the overall, inclusive social system as a whole. Face-to-face communications form

systems of interaction, whereas decisions form organizations. Functionally different types

of communications form different functional subsystems (economy, policy, law, science,

art, etc). Each of them must possess the capacity to distinguish (and, therefore, filter)

relevant from irrelevant communications. Apart from this basic capacity, functional

subsystems are characterized by specific codes: legal subsystems organize communication

along the legal/illegal opposition; political subsystems along the power/non-power

opposition; scientific subsystem along the true/untrue opposition, etc. The different codes

(usually in the form of a basic opposition) are the source of the functional organization into

functional subsystems.

Within a social system, its various functional subsystems become each other’s

environment. Given that the different functional subsystems are based on different codes,

they do not understand each other. As we have already seen, the exchanges that occur

between them take the form of perturbations, not the form of an exchange of information.

10. Conclusion

Some of the problems we have touched upon need further development. The most

demanding ones are the following:

1. Indications about how to move from the analysis of macrosystems to their

subsystems. More examples from biology, cognitive and social sciences should be

collected and analysed. Eventually aspects of a general methodology are extracted.

As a start, we collect below a sample of cases exemplifying the generality of the

suggested methodology without further comments (the details shall be developed in

subsequent reports), other than noting in passing that in each case, the two hierarchical levels

of ‘_P ¼ set as a collection of elements’ and ‘W ¼ set as lattice of subsets’ are evident.

Proteomics

_P: 18 sequence; objects ¼ amino acids; morphisms ¼ ‘closely related’

W: (38) active sites; objects ¼ 28 structures; morphisms ¼ enzymatic action

1: protein folding not-an-algorithm

Physiology

_P: cells; objects ¼ cells in a multicellular organism;

morphisms ¼ intercellular communication

W: organism; objects ¼ multicellular organisms; morphisms ¼ physiology

1: physiologic integration (symbiosis of cells)

Ecology

_P: organisms; objects ¼ organisms in an ecosystem;

morphisms ¼ inter-species dynamics

W: ecosystem; objects ¼ ecosystem; morphisms ¼ ecodynamics

1: population dynamical equation models
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2. A general theory of what were called ‘perturbations’ is needed. As a starter, two

main cases have been distinguished: perturbations between generically different systems,

such as the brain and the mind, and perturbations between specifically different systems

such as the political, economical, and legal subsystems of the social system. The latter

were called functional subsystems and were constituted along the selection of a specific

dual code. It is unclear whether the subsystems of the psychological system (the systems

articulating the level of representations, i.e. the reasoning, memory, and planning,

subsystems) are purely functional subsystems on a par with the social subsystems. Further

analyses are required before arriving at a definite answer.

3. Dig deeper into clef systems to see whether they present different layers of higher

order complexity. Is the higher order complexity of living systems, psychological systems,

and social systems the same? If not, what distinguish the different layers of higher order

complexity?

Apart from these still open questions, the main conclusions that arise from this paper

can be summarized with the following four theses:

1. The vast majority of natural systems includes hierarchical cycles, i.e. they are

impredicative or self-referential systems. The generic case is then the case of

impredicative systems, not the case of predicative system. Apparently, only a

meagre fraction of physical systems are predicative.

2. Systems characterized by the presence of hierarchical cycles have properties

remarkably different from systems without hierarchical cycles. In short: they do not

have largest models, they are not fractionable and they contain at least one

non-simulable model.

3. The topological network of entailment processes and their hierarchical cycles

determines the different types of complexity.

4. Understanding hierarchical cycles helps understanding some of the major

obstructions of contemporary science, such as the brain-mind conundrum and the

problem of the interaction between psychological and social systems. Both

represent cases of interactions between systems of a different nature. Hierarchical

cycles appear to be one of the very few ideas able to break the divide that isolates

and fragment the various sciences.

During the past century, the idea of a structurally non-reductionistic science has been

raised time and again, most of the times, however, without any robust grounding in science

andmathematics. The research programme arising from the framework of hierarchical cycles

appears to be able to properly contribute to such a demanding – andmost needed – objective.
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