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Using enzyme-substrate recognition as an example, a phenomenological 
calculus for recognition processes is developed. Recognition is derived as 
one aspect of a general phenomenology of the causal relationship. Rather 
than considered as an isolated process, recognition is thus analyzed in its 
functional context as a characteristic feature of a system which responds to 
specific inputs to produce specific outputs. The mathematical formulation of 
the concept of system response and the associated description of a system in 
terms of response lead directly to a metric calculus providing a quantitative 
measure for discrimination. Moreover, the metric structure inherent in this 
phenomenology allows one to determine the functional relationship 
between the physical features used by the system to recognize an input (e.g. a 
substrate) and corresponding features possessed by the output (e.g. the 
product). The phenomenological calculus is derived from a set of elementary 
postulates. 

The system is divided into distinct, interacting subsystems, indexed by a 
finite set {i = 1,2,. . . , m}. The set of causes imposed upon the system (i.e. 
the input) is given by various Fi belonging to some Hilbert space H. The 
system is characterized by a fixed set of constitutive parameters, a i, which 
belong to the dual space H*. The system dynamics is phenomenologically 
described by a “response” tensor given by the dyadic R = a $. It is postulated 
that R is invariant with respect to transformations of the representation, that 
is, with respect to a change of constitutive parameters. In particular, R has an 
invariant dual representation. 

In the example of enzyme-substrate recognition, the ai’s represent 
enzymes and the Fi’S represent substrates. The recognition process is given 
by the evaluation a i (Fi), while the enzyme-substrate complex is represented 
by the response tensor aiE. The dual representation is the mathematical 
analogue of the enzyme-product complex. The paper closes with the analysis 
of membrane transport and dissipative systems, from which the idea of the 
response tensor originated. 

t Present address: Division of Chemistry, National Research Council, Ottawa, Ontario, 
Canada KlA OR6. 
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1. Introduction 

Recognition and its correlate, discrimination, are, in the true sense of the 
word, vital. Recognition is the foundation of the extreme specificity of 
biological processes and is the basis of control. Nearly every biological 
process provides an example: the immune response discriminates between 
self and not-self. Enzymes are justly famous for their precision in the 
recognition of specific substrates. In excitable membranes, electrical activity 
is governed by variations in the membrane’s ability to discriminate between 
various ions. It is impossible to conceive of the regulation of metabolism 
without the recognition processes expressed in passive permselectivity or 
in carrier-mediated transport. At every step in the synthesis of proteins 
under the control of information-bearing macromolecules there is a 
recognition process. 

Recognition processes will be the central concern of this paper but the 
goal of the analysis will be far more than just a model for recognition 
processes, per se. That is, recognition will not be considered as an isolated, 
primary phenomenon, to be analysed separate from the more compre- 
hensive functional context in which recognition processes occur. In 
their seminal paper on enzyme-substrate recognition, Edelstein & Rosen 
(1978) point out that any given recognition process “triggers programmed 
responses . . . or to be more precise, it sets the initial conditions for a 
complicated dynamic process which follows it.” As it was, however, they 
attacked the problem of recognition directly, outside the context of the 
dynamics in which it is embedded-the transformation of substrate to 
product. Nevertheless, their mathematical model for enzyme-substrate 
recognition can be extended in a simple and natural way to include a 
quantitative measure of the relationship between the structural features of 
the substrate and those of the product. This will be one result of the 
phenomenology we will develop to represent dynamical systems based 
upon the recognition process. 

Our approach to the problem of recognition starts with the construction 
of a phenomenological description of the general dynamical situation 
wherein the system acts as mediator between “causes” presented and 
specific “effects” produced. This phenomenological calculus is based upon 
a simple function which serves as a measure of the “response” of the system 
to the given cause presented to (or imposed upon) it. Implicit in the idea 
of response is the germ of recognition, and the quantification of recognition 
is a direct consequence of the metrical structure inherent in this 
phenomenological calculus. 

This phenomenology was originally developed in a context which seemed 
strictly dynamical, namely, the elucidation of the structure of irreversible 
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thermodynamics: Richardsont (1980). In a sequel, Richardson, Louie 
& Swaminathant (1982), it was demonstrated that all the linear 
phenomenology of irreversible thermodynamics could be derived from 
three simple postulates on the nature of the representations used to describe 
the response of a system to imposed forces (or to causes presented). In 
this second paper, the mathematical characterization of response was exten- 
ded beyond the limited context of irreversible thermodynamics and applied 
to the problem of biological aging. 

The phenomenological calculus presented in R-L-S-82 can be applied 
to a large class of dynamical systems, being general in derivation and not 
at all restricted to the two examples considered. However, it is restricted 
in a mathematical sense in that the imposed forces (i.e. generalized causes) 
must be represented as finite-dimensional vectors. In a practical sense, this 
is no great restriction because there is no restriction on how finite-one 
could propose a force (cause) vector of dimension n = 1000. Nevertheless, 
there is a great difference between the practical and theoretical. By develop- 
ing in this paper a phenomenological calculus which is based upon infinite- 
dimensional vector spaces, we shall discover a tool of remarkable generality, 
particularly well-suited to study systems when the recognition process 
underlies the dynamics. The Edelstein & Rosen (1978) enzyme-substrate 
recognition scheme is shown to be a subclass of this phenomenology. 

2. The Response Tensor and Description Space 

In a practical and very successful manner, phenomenology has long been 
used in the biological sciences. A set of causes, {Ci}, is directly related to 
the set of observed effects, {E’}, by means of curve fitting. Compartment 
analysis provides an example of the phenomenological reduction of kinetic 
data, while the Hodgkin-Huxley equations are a famous example of a 
phenomenological description of an electro-physiological process by curve 
fitting. Such direct phenomenological models can be represented by scheme 
(a) in Fig. 1. The system upon which the causes act is not explicitly evident, 
and it is only a posteriori that the parameters of the curve-fit are given 
interpretation in the context of the system. 

In the phenomenological calculus developed in R-80 and R-L-S-82, the 
system enters in a direct and primary manner. The relationship between 
cause and effect is secondary to, and derived from, the response of the 
system to the causes imposed. As it will be used later in a discussion on 
recognition processes, let us review the basic tenets of the above-mentioned 
papers in the notation of irreversible thermodynamics. The causes, Ci, are 

t Hereafter referred to as R-80 and R-L-S-82. 
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FIGURE 1. 

the forces per mole of species i: Ci = Fi. The effects, E’, are just the molecular 
fluxes produced by these imposed forces: E’ = J’. There are three postulates. 

Postulate 1. The specification of the forces, {Fi}, acting upon a system 
and the set of the constitutive parameters, {a’}, conjugate to those forces 
is sufficient to determine a phenomenological description of the system 
dynamics. 

Postulate 2. The system dynamics is characterized phenomenologically 
by a dyadic called the response tensor, R = aiFi. 

Definition. The space spanned by R is called description space. 

Postulate 3. The response tensor is invariant under co-ordinate transfor- 
mations in description space. 

Postulates 1 and 2 are indicated by scheme (b) in Fig. 1. Postulate 3 
implies that there are other representations of the response tensor. In 
particular, one may write R in terms of the components {Ji} dual to the 
components {Fi}. This representation is indicated by the right hand side of 
scheme (c) in Fig. 1. Postulate 3 states that the response tensor R given in 
terms of a system dynamics described in terms of causes {Fi} is the same 
as that described in terms of effect {Ji}. 
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By definition, the components dual to {Fi} are given by the projection of 
R upon the co-ordinate vector ai. That is 

Jizai.R 

= (a’. a’)Fj 

= L’jF,. (1) 

Thus cause and effect (i.e. Fi and J’) are phenomenologically related by a 
metric tensor having elements L”= a’.a! In R-L-S-82 it was shown that 
the response tensor R forms a metric space, with the norm IR12 = R : R = 
L”Fi. Fj z 0. Thus, from these three postulates based upon the concept of 
system response one arrives at a phenomenological calculus with an inherent 
metrical structure. 

3. Hilbert Space and its Dual 

We shall now proceed to extend the mathematical formalism. Instead 
of letting the domain of the causes be the finite-dimensional inner product 
space 08” (as in R-L-S-82), we shall consider a general (possibly infinite- 
dimensional) Hilbert space. 

Throughout this paper, 23 will denote a real Hilbert space with inner 
product(., .) d an norm ().I[ (related of course by &VII= (x, x)~‘~). Of particular 
interest to us will be the Euclidean space H = R” with (x, y) = x. y and the 
Hilbert space H = L2(p) of all square-integrable real-valued functions on 
a measure space (X, A4, CL) with (x, y) = &xy dp. 

It is well-known that a is a bounded linear functional on H (i.e. a E H*) 
if and only if there exists a unique y E H, a(x) = (x, y). Further, I(a = ((~(1 
where (I. (I* denotes the operator norm of a, 

lbll* = sup {Ila(x)ll: IMI = 11. (2) 

(This is one of the many so-called Riesz representation theorems in 
functional analysis.) Thus, there is a one-to-one mapping @ of H* onto H 
which satisfies 

u(x)=(x,au) 

for all x E H and all u E H*. It is easy to see that 

(3) 

@(a+b)=@(u)+Q(b) and Wru)=rWa) 

for all a, b E H and all r E 54. So @ is a linear mapping. Also, 

Jl@u -aelI = Jp?(u - b)ll = lla - bll*. 

(4) 

(5) 
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So @ is a linear isometry of H* onto H. By defining 

(a, b)* = (@,a, @b), 

we see that ( . , . >* is an inner product on H* and 

(6) 

Ilull* = ((a, u)*y2. (7) 

So in fact @ is a Hilbert space isomorphism from H* to H and H* is a 
real Hilbert space with inner product ( . , .)* and norm 11. I(*. In other words, 
H can be considered as “self-dual” and in fact quite often the identification 
H* = H is made. But we shall distinguish between members of H (“contra- 
variant vectors”) and members of H* (“covariant vectors”) to keep the 
ideas straight. 

4. Products of Hilbert Spaces 

Let (Hi, (. , .)i, 11. II), i = 1,2, be two real Hilbert spaces. On the product 
space HI x H2 we can define a function 

(.,.):(HIxH~)x(H~xH~)+R (8) 

by 
((Xl, x2), (Yl, Y2N = (Xl, Ylh +(x2, Yd2. (9) 

It is easy to check that (. , .) is an inner product on HI x H2 and that the 
metric induced by the corresponding norm [I./j is complete. So (HI x H2, 
(. , .), I). 11) is a Hilbert space. The norm topology of HI x HZ induced by II. 11 
is in fact the product topology of the respective norm topologies on HI 
and Hz. 

It is clear that this construction of product Hilbert spaces can be extended 
to any finite product. We shall only be concerned with the product space 
H* x H. The inner product on H* x H is defined by 

(b, x)9 (6, Y 1) = (a, b>* + (x, Y >. 

= M-N @b)+(x, Y> (10) 

with associated norm 

Il(a, XII = r(ll4*)2+ llxl1211’2 
= Cll@# + llxll’1”” (11) 

5. Tbe Space T! (H) 

Let y E H and b E H*. Let y 0 b, called the tensor product of y and 6, 
be defined as the bilinear mapping from H” x H to R whose action on 
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(a,x)EH*xH is 

(Y Ob)b, x) = a(y)b(x) = (Y, @U>(X, Q6). (12) 

In the language of tensor theory, a bilinear mapping from H* x H to 88 
is called a tensor of type (1,l) over H. The collection of all tensors of type 
(1,l) over H is denoted by T: (H). A typical member of T: (H) is a finite 
sum of tensors of the form yi 0 bi where yi E H and b i E H*, and we shall 
denote it simply by yi @b’ using Einstein’s summation notation ( = 
CL, yi Ob’). Its action on (a, x) E H* x H is defined naturally by 

(yiOb’)(& X) = (yi, @U)(Xy @b’)* (13) 

6. Dyads and Dyadics over H 

Let y E H and b E H”. We define the dyad to be 

by=@lmD-‘y. (14) 

In other words, the dyad is a bilinear mapping from H” x H to R (by 
ET: (H)) sending (a, x) to 

by (a, x) = (@b OW’y)(a, x) 

= w, @a>(& Y) 

= (4 b)*k Y>. (15) 

A finite linear combination of dyads is called a dyadic. 
Since @ : H* + H is in particular a bijection, the tensors +b’ O~-‘yi, as 

b’ and yi range over all finite collections in H* and H, respectively, span 
the whole of T: (H). Thus the collection of all dyadics is the whole space 
T:(H); i.e. every tensor of type (1,l) over H has a representation as a 
dyadic via 

X’@ai = (d?-‘Xi)(@Ui)* (16) 

7. The Double Inner Product 

For aiXi (sum over i = 1,2, . . . , m)and b’yj (sum over j = 1,2, . . . , n) in 
T: (H), we define their double inner product to be the real number 

((U’xi, b’y<))= (a’, 6’)*(Xi, yj) (sum over i and i) 

= (@a’, @b’)(Xi, yj). (171 

One can easily check that the definition is independent of the representation 
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of the dyadics-i.e. if u ‘Xi = u”‘x*~, and b’yj = b”‘y*jv, then 

((u ‘xi, b’yj)) = ((u”‘x~i~, b”‘y*jT)) (18) 

and that ((. , .)) is an inner product on T: (H). However, T: (H) is not 
necessarily complete with respect to the norm associated with ((. , .)), thus 
T: (H) itself may not be a Hilbert space. 

8. Description Space 

Let a’, a*,. ..,a” be fixed in H*. Let D={a’xi (sum over 
i): Xl, x2, . . . , x,,, E H} be called the description space determined by 
{a’,...., a”). It is clear that D is a linear subspace of T: (H) and so 
(0, ((. , .))) is an inner product space. For i, j = 1,2, . . . . , m, let the 
phenomenologicul coeficients be 

Lij = {a i, J)* = (aa i, Quj). (19) 

Then for u ‘Xi, U iyi E D, 

((U’Xi, U’yi))= L”(Xi, yj)* (20) 

Let II.II be the norm on D associated with ((. , . )); then 

(IU ‘Xi/l” = L”(Xi, Xj) 2 0. (21) 

One easily sees that for each k = 1,2, . . . , m 

OsLkkllXk -ykli* ( no sum) I I/U iXi - U iyil( 

5 IL”1 llxi - Yillllxj - Yjll (22) 

holds. Hence a sequence {a’~,,~}, converges to a’xi in D if and only if, for 
each i, the sequence {x,,i}p converges to xi in H. Since H is complete, this 
implies that D is also complete, whence (D, ((. , .)), II. 11) is a Hilbert space. 
Note that although T: (H) may not be complete, D, which is essentially a 
“finite dimensional subspace” of T: (H), is complete. 

9. Postulates 

Let us now make explicit the basic axioms in our analysis of complex 
system dynamics. We are essentially rephrasing the three postulates in 
section 2 in our Hilbert space context. 

Postulate 1. A complex system is divided into distinct, interacting subsys- 
tems, indexed by a finite set {i = 1,2, . . . , m}. The system is characterized 



PHENOMENOLOGY OF RECOGNITION PROCESSES 85 

by a fixed set of constitutive parameters {a’ EH*: i = 1,2,. . . , m}. The set 
of causes imposed on the system is described by various FI, Fz, . . . , F,,, E H. 

Postulate 2. The system dynamics corresponding to the sets of causes 
{Fi} are characterized phenomenologically by the dyadic response tensor 
R= aiFi. 

Post&date 3. The space spanned by R is the description space D = 
{R=aifi:F~,Fz, . . . , F,,, E H} and R is invariant with respect to representa- 
tions (i.e. alternate descriptions of the dynamics) as a member of T: (H). 

10. Dual Representation 

Proceeding analogously as in R-L-S-82, let us now define the effects in 
D corresponding to a set of causes {Fi} to be, for j = 1,2, . . . , m, 

J’ =R(a’, .)=(a’, a’)*Fi EH*, (23) 

that is, 

J’ = Lii& (24) 

Suppose now we want to find al, az, . . . , a,,, E H such that we can write R 
in a dual representation 

R = a iFi = aj J’. (25) 

Then we have 

a iFi = ai J’ = UiLii$‘i (261 

whence for all choices of Fi, . . . , F,,, in H 

(a’ -ajL”)Fi =O. (27) 

Thus 

*‘-*&,Lo~~* (28) 

that is, 

L”aj = a’* (29) 

(The transition from equation (28) to equation (29) uses the fact that the 
m X m real matrix (~5”) is symmetric.) 

The set {aj} would be determined uniquely if the Gram matrix (I,“) of 
{a’} were invertible. But this in general is not the case and we have some 
degrees of freedom in picking the solution {ai} to equation (29). This has 
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interesting interpretations in the context of the unidirectionality of causes 
and effects, and the reader is referred to R-L-S-82 for details. The dual 
representation of R is depicted in Fig. l(c). 

11. H = L2(p) 

The treatment of the special case when H is the Euclidean space R” 
with (x, y) = x. y is the content of R-L-S-82, to which the reader again is 
referred for details. 

Let us look at another special case when H = L’(p), the space of all 
square-integrable real-valued functions on a measure space (X, M, CL). Note 
this is in fact the general case because it is known that every non-trivial 
Hilbert space is isomorphic to I’(A) for some set A (via Fourier series 
representations). But we shall not dwell on this point here. 

In L’(P), 

k Y> = jxv dcc. 
The statement of the Riesz Representation Theorem is 

a(x) = (x, @u) = 
I 

x&z dp 
X 

(31) 

and instead of considering L2(k)* =,5’(p) via a H&I we could use the 
identification a H&I dp which sends L2(p)* into the space M(,u) of all 
measures which are absolutely continuous with respect to k. So we can 
consider L2(~)*wA4(~) as well. 

The double inner product on T: (L*(p)) is 

((U ‘Xi, b’yj)) = 
(I X 

@a’ @b’ dp)( I,xiyj dp). (32) 

Fixing a I, a*, . . . , a”’ ELM* and letting the description space be D = 
{aiE:F1,F2,.. . , F,,, E L’(p)}, we have 

((u ‘F;:, a ‘Gi)) = L” 1 F,Gj dp. 
X 

The effects in D corresponding to {Fi} are 

Jj =L’iF;: =L’i 

I 

E;;. d@ E L2(p)*. 
X 

(33) 

Thus J’ can be considered as the measure L”Fi dp E M(p). 
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12. An Application: Enzyme-Substrate Recognition 
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A model for enzyme-substrate recognition is presented in Edelstein & 
Rosen (1978). The theory rests on the following two assumptions. 

(1) That substrates can be represented by continuous functions, which 
vanish outside some closed bounded region in II?, analogous to charge 
or mass distributions; i.e. substrates are represented by elements 
FE C(K), the space of all real-valued continuous functions on K, 
where K is a compact subset of R3 chosen to be large with respect 
to molecular dimensions. 

(2) That recognition of the substrate corresponds to the evaluation of a 
linear functional on C(K)-or what is equivalent: 

(2’) That associated with a given enzyme is a function a in the dual space 
of C(K), i.e. a E NBV(K), the space of all real-valued, normalized 
functions on K of bounded variation, and that recognition of a 
substrate F results from the evaluation of Stieltjes integral of one 
form 5 F da. 

(The equivalence of (2) and (2’) is due to yet another theorem known as the 
Riesz Representation Theorem.) 

These assumptions are summarized in Fig. 2. 

S c Substrates ,-c F l C(K) 
I 

e c Enzymes - o E’ NBV (K) 

FIGURE 2. 

Note that the continuous function F representing an enzyme portrays 
the “shape” of the molecule and describes the location and orientation of 
the substrate relative to the active site-these are the factors which play 
an important role in the recognition process. Thus the recognition problem 
as analysed here is based on the structural relationships between the 
substrate and the product and not on the dynamics of the transformation. 
The reader is referred to Edelstein & Rosen (1978) for details. 

How can we formulate this model in terms of our Hilbert description 
spaces? Consider the measure space (K, M, m) where M is the r-algebra 
of all Lebesque measurable subsets of K and m is the Lebesque measure 
on M, and consider the Hilbert space L*(m). Now C(K), equipped with 
the supremum (L”) norm, is a closed linear subspace of L”(m) (hence 
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complete). Since m(K) < co, for 0 < r <s c: CO llxll, 5 llxlls whence L’(m) = 
L”(m). So in particular L”(m) c L’(m) c L’(m), and we have the situation 
depicted in Fig. 3. 

Function spaces C(K)-L,JJ(m) -L2 (ml 
I 
I I I 
1 I I 
I I 
I I I 

NBAK) 

I I 
Dual function spaces 

I 
I L’ (m) t-< L’ (ml 

I 
Spaces of meQS”re M(K)----+ F(m)MM(m) 

FIGURE 3. 

The Banach space isomorphism NBV(K) =M(K) is due to a theorem 
on the differentiation of measures (Rudin, 1974, Theorem 8.14), where 
M(K) is the space of all bounded, signed, regular measures on K. F(m), 
the space of all bounded, signed, finitely additive measures on K which 
are absolutely continuous with respect to m, is the dual space of L”(m) 
(Hewitt & Stromberg, 1975, Theorem 20.35). The fact that L’(m) and 
M(m) are isomorphic as Banach spaces is the statement of the Radon- 
Nikodym theorem (Hewitt & Stromberg, 1975, Theorem 19.23), the corre- 
spondence being h tag via h dm = dk, and h = dp/dm is known as the 
Radon-Nikodym derivative of p with respect to m. 

With this framework, we can extend the space C(K) to L’(m) and the 
situation in Fig. 2 can then be generalized to that in Fig. 4. While the 

S c Substrates -Fe L’(m) 

I\ 

FIGURE 4. 

evaluation of the linear functional a at F represents enzyme-substrate 
recognition, the dyad aF can be interpreted as the enzyme-substrate 
complex, the intermediate species in their interactions. 

There is no need to repeat or elaborate the lucid and thorough discussion 
of Edelstein & Rosen (1978) on the biological implications of this theory 
of enzyme-substrate recognition. The identification of the response tensor 
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with the enzyme-substrate complex allows us now to put recognition into 
the overall dynamical context of catalysis of substrate to product. 

13. Enzyme Calculus 

The mechanism of enzymesubstrate interaction can be represented as 

e+SzZeS*e’PZP+e’ (35) 

where eS is the enzyme-substrate complex, e’P is the “enzyme-product 
complex”, P is the product of the interaction, and e’ is the “modified 
enzyme” from which the enzyme e can be recovered (by definition of an 
enzyme being a catalyst). Note that the mechanism (35) is essentially 
reversible as long as enough energy is present to drive the reaction one 
way or the other. 

Since the left half of Fig. l(c) is the mathematical analogue of Fig. 4 
which represents the left half of mechanism (35), the right half of mechanism 
(35) should have the right half of Fig. l(c) as its mathematical analogue. 
Specifically, let 

J=LF=(a,a)F (36) 

represent the product P, then 

a’ = L-la = (a, a)-‘a (37) 

represents the modified (or “dual”) enzyme e’. Thus the “complex” in the 
interaction is 

R=aF=a’J. (38) 

The process of dual enzyme-product recognition then naturally results from 

(J, a’) = 1 Ja’ dm. (39) 

We have, therefore, Fig. 5. 

FIGURE 5. 
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A further comment on equations (36) and (37) is in order. Although 
a = La’ looks like a linear transformation, which would be a highly ideal- 
ized, hence unrealistic situation, it in fact is not, because L = (a, a) is 
a function of a. Similarly J = LF = (a, u)F is the statement that the trans- 
formation from substrate to product is dependent nonlinearly on the 
enzyme a. 

14. Multi-enzyme Systems 

Having obtained Fig. 5, we can ask the next question: What happens 
when we have a collection of several enzymes e’, e2, . . . , e”? 

Let a’, a’, . . . , a” E L2(m) represent these enzymes, and let them span 
the description space D. What do the dynamical interactions in D represent? 
For each choice of substrates S1, Sz, . . . , S,, represented by Fl, 
F2, . . . , F,,, E L2(m) (“inputs”), via the response tensor 

R=&=qJ’ (40) 
where 

J’ = L”F, = (a i, a’)Fi (41) 
and 

a’ = puj, (42) 

one obtains a collection of products PI, P2, . . . , P,,, (“outputs”) represented 
by J’, J2, . . . , J” (Fig. 6). So D can be interpreted as a biochemical 
machine, i.e. a cell (or at least the metabolic part of a cell). 

FIGURE 6. 

The above represents the case when the enzymes function simultaneously 
(i.e. in parallel). Suppose we now have the case when 

ai = a’+’ (43) 
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that is 
ai=Liiai+l=(ai,ai)a’+‘(nosum) (44) 

for i = 1,2,. . . , m - 1. Then we have a model of the chain reaction 

s1 --L s* -z s3.. 

as depicted in Fig. 7. 

FIGURE 7. 

s,-* e--t s, (45) 

‘m-l,m-l 

. . . &-c-L 

I I 
1 

<F,,,-,,am-‘> <F,,a”‘> 

9 . . 

Note there is a major difference between enzymes functioning in parallel 
and in sequence-in Fig. 6 the interactions between different enzymes (L” 
for i f i) play a role in the reactions, while in Fig. 7 only the L”‘s appear. 

15. Membrane Transport 

As regards mechanism, Fig. 6 is equivalent to a schematic diagram for 
carrier-mediated membrane transport, with the left side corresponding to 
the exterior of a cell and the right to the interior. The only additional 
feature of Fig. 6 is the phenomenological description of the process afforded 
by the metric tensor, L”. It must be kept in mind that this phenomenology 
is not concerned with the dynamics or kinetics of the transport process, 
but rather describes and relates in a quantitative manner the salient physical 
structures which the carrier complex uses to recognize and discriminate 
between the various candidates for transport. 

Finally, in order to demonstrate that the proposed phenomenological 
calculus for recognition processes is not limited to Hilbert description spaces 
or to enzyme systems, we shall briefly consider passive membrane transport. 
Passive transport can be described by the linear equations of irreversible 
thermodynamics as diagrammed in Fig. l(c) and in particular as given by 
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equation (1). All that has been said in the previous sections regarding the 
role of the response tensor in the analysis of recognition processes applies 
also to the response tensor R= aiFi. There, and also by implication in 
Edelstein & Rosen (1978), it was shown that the squared norm of the 
response tensor provides a metric for measuring recognition. It is interesting 
that for transport processes, the squared norm is identical to the dissipation 
function, 6. 

Passive transport is a remarkable example of a phenomenology based 
upon recognition which is mathematically equivalent to a dynamics based 
upon a reduction to physical mechanisms. The dyadic response tensor in 
Fig. l(c) is an explicit statement about recognition. The summation index 
i enumerates the molecular species, and, for each species there is a corre- 
sponding constitutive parameter ai which quantifies the membrane system’s 
response to an imposed force, Fi. Given this fact of species recognition, all 
else follows from the three postulates in section 2, even S z 0. The unexpec- 
ted result that S = IR)* 2 0 is a direct consequence of the metrical structure 
inherent in this calculus for recognition and discrimination, which funda- 
mentally are metrical phenomena. 

On the other hand, most dynamic models for transport express the 
coupling coefficients, LB, in terms of Newtonian frictions. The force-flux 
equations (1) in this case are found directly from the balance of driving 
forces and frictional forces: see, e.g. Richardson (1970). In such physical 
models, the condition S z 0 is provided by the Second Law. Comparing 
the phenomenological and the dynamical description of transport, we see 
that the physical mechanism by which a membrane discriminates between 
molecular species by means of permselectivity is inherent in the constitutive 
parameters ai since L” = ai. ai. 

16. Discussion 

The reduction of biological problems to physical ones has been a common 
approach to theoretical biology. The main argument is that physics is the 
study of matter and its interactions, and that since biological systems are 
composed of matter, they must be analyzable in terms of the interactions 
of the particles of which they are composed. Historically, however, the 
reductionistic approach to biology is frequently too narrow in scope and 
the investigators often feel that biology stands on a higher hierarchical 
level than physics. The situation seems to be precisely the converse of the 
reductionistic idea: far from biology being swallowed up by physics, physics 
would, rather, be enormously extended by biology. 

The representation of the response tensor as a dyadic, a tensor of type 
(1, l), is suggested by the mathematical form of the radius vector (R-80). 
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Vector geometry is of course the mathematical tool used in physics. But 
what are vectors? They are simply tensors of type (0, 1) and (1,O). If we 
agree that biology extends physics, and that biology occupies a higher 
hierarchical level than physics, then it would be quite reasonable to analyze 
biological problems using the algebra of tensors of type (1, l), as in our 
phenomenological calculus. Let us be bold enough to suggest that the 
response tensor and description space are natural mathematical tools of 
biology. 

A main characteristic of this response tensor approach, as we mentioned 
before, is that we go directly to the mathematical structure created by 
interactions. This idea is not foreign to physics. In general relativity, the 
dynamics of the interactions among gravitating bodies is reduced to the 
curvature in the metrical structure of spacetime dictated by these bodies-a 
study of the geometry of a four-dimensional vector (i.e. a tensor of type 
(0, 1)). Analogously, the metrical structure inherent in biological interac- 
tions are derivable from the geometry of the (type (1,l)) response tensor. 

The concept of the response tensor was originally presented in the context 
of irreversible thermodynamics (R-80), in terms of the forces and fluxes 
of the dissipative system of transport processes. Since then the idea has 
been extended in R-L-S-82 to the analysis of cause-and-effect and aging, 
and in this paper to the analysis of the problem of recognition, in particular 
enzyme--substrate interactions, and finally back to the processes of mem- 
brane transport. Thus we have gone through a complete cycle. By complet- 
ing this cycle, we have provided a vigorous, mathematical foundation for 
a concept which was originally motivated by intuition and physical reasoning 
and developed primarily by analogy. Having acquired a general foundation, 
it becomes a general tool. 

Let us close by quoting T. S. Eliot from his poem Little Gidding: 

“And the end of all our exploring 
Will be to arrive where we started 
And know the place for the first time.” 
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