
J. Mol. Biol. (1983) 168, 143-162 

Differential Geometry of Proteins 

Helical Approximations 

A. H. LOUIE AND R. L. SOMOaJAIt 

Division of Chemistry 
National Research Council 

Ottawa, Ontario, Canada K I A  OR6 

(Received 16 September 1982, and in revised form 24 March 1983) 

We regard a protein molecule as a geometric object, and in a first approximation 
represent it as a regular parametrized space curve passing through its s-carbon 
atoms (the backbone). In an earlier paper we argued that the regular patterns of 
secondary structures of proteins (morphons) correspond to geodesics on minimal 
surfaces. In this paper we discuss methods of recognizing these morphons on 
space curves that represent the protein backbone conformation. The mathe- 
matical tool we employ is the differential geometry of curves and surfaces. 

We introduce a natural approximation of backbone space curves in terms of 
helical approximating elements and present a computer algorithm to implement 
the approximation. Simple recognition criteria are given for the various morphons 
of proteins. These are incorporated into our helical approximation algorithm, 
together with more non-local criteria for the recognition of fl-sheet topologies. The 
method and the algorithm are illustrated with several examples of representative 
proteins. Generalizations of the helical approximation method are considered and 
their possible implications for protein energetics are sketched. 

1. Introduction 

Representations of protein structures 

The complete  three-dimensional  s t ruc ture  of  a prote in  is general ly represented 
and  documented  as a list of  a tom identit ies and co-ordinates.  Such lists are 
compiled a t  the  Pro te in  D a t a  Bank,  Brookhaven.  

The  complete  s t ruc ture  of  a protein,  however,  contains informat ion on 
thousands  of  a toms  and so remains  incomprehensible  unless a more  intelligible 
representa t ion  is constructed.  This involves a selective reduct ion of  complexi ty .  
Such representa t ions  should ideally display only those morphological  aspects  t h a t  
are of  relevance to the  par t icu lar  question under  s tudy.  Different  requi rements  of  
s t ruc tura l  details thus  give rise to representa t ions  ranging f rom three-dimensional  

t Author to whom all correspondence should be addressed. 
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space-filling, ball-and-stick, and wire models, to structural cartoons (e.g. see 
Dickerson & Geis, 1969; Richardson, 1981) showing only the conformation of the 
s-carbon backbones. 

In addition to these "physical" models of protein structures, there are more 
abstract representations. The latter include plots of all dihedral backbone angles 

and ~ at each s-carbon atom (Balasubramanian, 1977), and a variety of 
s-carbon distance plots: all C~-C~ distances (e.g. see Kuntz et al., 1979; Dunn & 
Klotz, 1975; Sippl, 1982), Ci~ to C~ +3 distances (Rose & Seltzer, 1977) and Ci~ to 
C~ +I, v~C i+2, v~c~+3, v~Ci+4 distances (Goel & Ycas, 1979). 

We regard a protein molecule as a geometric object, and in a first 
approximation represent it as a regular parametrized space curve passing through 
its s-carbon atoms. The requirement that the space curve be regular 
(continuously differentiable with a non-vanishing derivative) is not overly 
idealized and restrictive, because the 2 to 3 A effective resolution of X-ray 
crystallography provides enough error margin for an analytically representable 
curve to be constructed. One may impose the smoothness condition that the arc- 
length between successive s-carbon atoms be within a prescribed upper limit and 
3"8 A (the established "average" C / to Ci~ + l distance) so that the curve behaves in 
a physically meaningful way (e.g. does not have "loops") between consecutive 
points. The curvature and torsion of such space curves representing proteins are 
used to characterize structural patterns (morphons) of the backbones. (The reader 
is referred to any standard text on differential geometry, e.g. see Carmo (1976) for 
a review of the subject.) Some differential geometry-inspired concepts have been 
presented in the literature. Thus, Rose & Seltzer (1977) estimate radii of 
curvature along the backbone in their chain turn identifying algorithm. In a 
series of papers, Rackovsky & Scheraga (1978,1980,1981) represent the backbone 
of a protein molecule as a polygonal arc through the s-carbon atoms. Using four 
adjacent C~ atoms, they obtain a discrete representation of the backbone and can 
compute local versions of the curvature and torsion. Thus, they can operate on 
the well-defined length scale covering four adjacent C~ atoms. However, this 
"difference geometric" approach has its inherent limitations and non-physical 
peculiarities (e.g. negative curvature for a general space curve) and does not seem 
to be readily generalizable for different length scales. 

We feel that the representation of a protein molecule by a regular space curve 
provides a natural, mathematically well-defined yet simple model that is readily 
generalizable. It provides us with a program for studying protein structure and 
function. In our earlier paper (Louie & Somorjai, 1982), we considered proteins in 
differential geometric terms, but on a higher hierarchical level: as curves lying on 
surfaces embedded in three-dimensional space R 3. In fact, the protein curves 
could be well-represented as geodesics on minimal surfaces. This dual description 
of proteins as curves and surfaces provides a distinctive framework in which to 
discuss the structural and dynamical representations of protein patterns. 

This paper addresses the problem of recognition of protein morphological 
patterns or morphons t. Given the representation of a protein molecule as a space 

t From po~ (shape, form) and the common scientific suffix -on to indicate a well-defined, stable 
identity (compare exciton, polaron, soliton). 
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curve ,  w h a t  is t h e  m o s t  n a t u r a l  w a y  o f  a n a l y z i n g  i t  to  o b t a i n  specif ic  s t r u c t u r a l  
i n f o r m a t i o n  ? T h e  a n s w e r  t u r n s  o u t  to  be :  in t e r m s  o f  he l ica l  a p p r o x i m a t i o n s ;  i.e. 
a p p r o x i m a t i o n  o f  d i f f e ren t  sec t ions  o f  t h e  space  c u r v e  b y  hel ices  o f  d i f f e r en t  r a d i i  
a n d  p i t ches .  Th i s  m e t h o d  is m o s t  r e a s o n a b l e  on  p h y s i c a l  g r o u n d s  because ,  
t y p i c a l l y ,  l a rge  p o r t i o n s  o f  a p r o t e i n  b a c k b o n e  a re  a l r e a d y  hel ices,  a n d  i t  is m o s t  

logical  on  m a t h e m a t i c a l  g r o u n d s  b e c a u s e  hel ices  c o r r e s p o n d  to  t h e  s i m p l e s t  c lass  
o f  s p a c e  cu rves :  t h o s e  w i t h  c o n s t a n t  n o n - v a n i s h i n g  c u r v a t u r e  a n d  t o r s i o n .  

2. Theory and Methods 

(a ) Helical approximations 
Let  ~(s)~>0 and r(s) be rea l -va lued  continuous functions of s on a real interval 

I - - [ a ,  b]. Then the fundamental  theorem for space curves s tates  that ,  except for position 
in space, there exists a unique space curve for which ~(s) is the curvature,  ~(s) is the 
torsion, and s is the are-length parameter .  Conversely, a curve (modulo a Euclidean 
transformation) is defined uniquely by its curvature and torsion. Thus, there is a bijection 
(one-to-one correspondence) between the class of all space curves and the class C(I, R 2) of 
continuous mappings from I to R 2 ; i.e. of pairs of continuous functions on real intervals.  
In  part icular ,  the protein conformations form a subset  of C(I, R2). 

The problem of recognizing morphons in proteins becomes this: how can one extract  the 
information presented in a pair  of continuous functions (K, r), and describe the associated 
space curve in morphological terms ? In this section we give the mathemat ical  background 
of an approach to this problem. A more general, abs t rac t  t rea tment  of the theory has been 
described by Brown & Page 0970). 

A mapping f of I - - [ a ,  b] into R 2 is called a s tepped-mapping if there exists a finite 
sequence of real numbers a f a o < a  I < . . .  <a,=b,  such tha t  the restrict ions o f f  to each of 
the open intervals  (ai-1,ai), i= l, 2 . . . . .  n, are constant .  The ordered set {a 0, a I . . .  , a,} is 
an f-par t i t ion.  Note tha t  a s tepped-mapping f has many different f-part i t ions.  In 
part icular ,  any finite subset of I tha t  contains an f -par t i t ion  is an f -par t i t ion.  The set of all 
s tepped-mappings from I to R 2 is denoted by S(I, R2). 

The mathematical  result tha t  is of  interest to us is tha t  any given mapping g= (K, r) in 
C(I, R 2) can be arbi t rar i ly  closely approximated by mapping in S(I, R2): for each 
e > 0 ,  there exists  feS(I,R~), such tha t  the maximal  difference between f and g is less than  
~, i.e. : 

sup{ I[f (s) -g(s)I1: a ~< s ~< b} < e, (1) 

where I1"11 is the s tandard  norm in R 2, II(x, y)II-- (x2+ y2)~. (The mathematical  s ta tement  is 
tha t  the uniform closure o fS ( I ,  R 2) contains C(I, R2). Subsets with this proper ty  are called 
approximat ing basis sets.) 

The relevant result  of the  analysis is t ha t  a pair  of continuous functions (K, v), 
representing the curvature  and torsion of a protein backbone, can be approximated  by 
functions from I to R 2 tha t  are sectionally constant.  (An example, which we discuss in 
Results  and Discussion, section (d), is shown in Fig. 6.) 

Now what  is the  shape of a space curve tl~at corresponds to a s tepped-mapping f in 
S(I, R 2) ? Between any 2 consecutive points a i_ l and al in an f-part i t ion,  f is constant;  i.e. 
the corresponding space curve on [a i_ 1, a~] has constant  curvature  and torsion. But  a space 
curve has constant  curvature  and torsion if and only if  i t  is a (circular) helix (or a 
degenerate helix). Indeed, if the constant  curvature is K i and constant  torsion Ti, then for 
Ki~>0 and r ;~0 ,  the space curve is a helix Xi(s) with radius:  

Ki r, = ~ + ~ (2) 
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and pitch 2~rp~, where: 

1" i 

p~ = K/2 + ~ .  (3) 

The helix is r ight-handed if r />  0 and left-handed if r / <  0. I f  ~i ~ 0 but  T~-- 0, then the space 
curve is a (planar) circle with radius 1/K~; if K~=-0 (implying r i=0) ,  then the helix 
degenerates into a s t raight  line. 

Thus a s tepped-mapping in S(I, R 2) gives a space curve tha t  is a stepped-helix: on each 
subinterval  [a/_ l, as], the curve is a helix Xi(s ) with radius r/ and pitch 2wpl. Since the 
helices are determined only up to a Euclidean transformation (a rigid motion), they can be 
appropriately "pa tched"  together so tha t :  

:Xi- l (a~) -~ X i ( a i )  (4) 

(i.e. end points meet), and tha t  the Frenet  tr ihedron (t, n, b) moves smoothly along the 
entire curve (i.e. a t  the end points a t, the t r ihedra from consecutive helices match). See 
Fig. 1. 

! ~ J ' "  

Fro. 1. Joining helical steps in a stepped-helix. 

Thus we see tha t  any given space curve, in part icular  any protein backbone, can be 
arbi t rar i ly  closely approximated by stepped-helices. I t  is through this helical 
approximation of proteins tha t  the relevant s tructural  pat terns  are recognized. 

(b) Line-groups 
The backbone of a protein forms what  a crystal lographer calls a line-group (a 

1-dimensional repetit ion of a unit  motif) if the regulari ty is such tha t  all the dihedral  
angles (r r are the same; i.e. ff successive units have identical relative orientations. Every  
line-group in proteins is a helix, and this is another reason why helical approximat ions  are 
natural  mathematical  tools in the analysis of protein morphons. 

Helices are conveniently described by  the radius r (of the cylinders on which the helices 
lie) and the pitch 2~p, the canonical equation (with the z-axis as the axis of the helix) 
being: 

X(s )=( r  cos,, r sins, ps). (5) 
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Note tha t  here the arc-length is actual ly (r 2 +p2)~ s; but  for simplicity we shall ignore this 
scale factor. The inverse to equations (2) and (3) is: 

r 

-- r 2 + p 2 '  (6) 

P 
= r 2 +p2 �9 (7) 

An addit ional  parameter  (residues per turn, rise per residue, or phase separation per 
residue) may  be used to describe the regulari ty of the a-carbon distr ibutions along the 
helix. The numerical values of these parameters  are used to identify different port ions of 
the protein backbone, in an algorithm we present in section (c), below. 

The a-helix is the most abundant  secondary structure in proteins. This line-group is a 
r ight-handed helix with an average radius r=2"3 A and pitch 2~rp--5-4 A (p---0"86). The 
a-carbons are arranged in a helical coil having 3"6 residues per turn,  hence the rise per 
residue is 1-5 A and the phase separation per residue is 100 ~ ( = 1-75 rad). Thus an a-carbon 
atom appears  on the curve (5) for every s-interval of length 1-75. This helix has constant  
curvature  K=0"38 and torsion r---0-14. 

A single s t rand of a (parallel or antiparallel) fl-twisted sheet, to a good approximation,  
forms a line-group tha t  is an extended left-handed helix. The average radius is about  1 A 
and the average pitch is about  - 7  to - 8  A, although these values vary considerably 
among (and within) strands. 

(c) Approximation algorithm 
The a-carbon co-ordinates of many proteins are deposited at  the Protein Data  Bank, 

Brookhaven. Our computer  algorithm transforms such discrete sets of information on 
protein backbone conformations v/a helical approximations so tha t  various morphons can 
be recognized. 

The theory of approximat ion of space curves by stepped-helices is slightly modified for 
fitting a discrete set of da ta  as follows. The fitting is done sequentially and in an 
overlapping fashion such tha t  a t  the i th step, the co-ordinates of a-carbon atoms i to 
i + M -  1 are fitted onto the best approximating helix, where M is the "length" of each helical 
segment. W e  find tha t  for an initial run, M is best  taken to be 5, although 4 is the 
minimum for the number of parameters  we wish to estimate. M can be increased 
appropr ia te ly  after the different portions of the backbone are identified (see Results and 
Discussion, section (d)). In  fact, M is the length scale on which one "fil ters" the 
information and is arbi t rar i ly  adjustable,  M t> 4. 

Each step of fitt ing M adjacent  a-carbon co-ordinates is divided into 2 consecutive 
stages. The first is a finite difference Levenberg-Marquardt  minimization algori thm (from 
the IMSL l ibrary of For t ran  subroutines; see Brown & Dennis, 1972) used to find the best  
fitting circular cylinder through these M points. From this stage we obtain the radius r~ of 
the cylinder (hence of the helix tha t  lies on this cylinder), as well as the direction V~ of the 
axis of the cylinder. This fitting is equivalent to the usual method of the crystal lographer  
(e.g. see R a j a n &  Srinivasan, 1977), in which the a-carbon co-ordinates are projected onto a 
plane perpendicular to the axis and then fitted onto a circle. The second stage uses a linear 
regression algorithm, which gives the pi tch p~ of the best  fitt ing helix on the cylinder 
through the M points, and the phase separat ion LJs~ of consecutive points. 

The algorithm is summarized succinctly in Fig. 2 (the For t r an  program is available from 
us upon request). Note tha t  our helical approximat ion algorithm has the dist inct  
advantage  tha t  all port ions of the protein backbone are fitted, not just  the regular 
secondary structures.  The regular structures merely correspond to sections where the  
running segment length M can be increased (i.e. longer helices) while the " random" 
portions are where the "helices" may contain less than a complete turn, but  are helices 
nevertheless. With  M - - 5 ,  the average goodness-of-fit per residue (C~: eqn (12)) for the 13 
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A B C 
i+4. r ~  

i+2, 
o 

I > i-I-I" ~ " > " ~-~ ' ,~ . / "~ , ~  ~ -  ~ ' \ ~ / ' ~ . _ , ~  7 ~ - - >  
i + 3  

~ 
l 

I 

i . - > i+  I 

Fro .  2. The  hel ical approximation alogorithm. I, begin for i =  1. A, M(=5) points (a-carbon atoms i 
to i + M - I )  to be fitted. B, fit cylinder; V~, axial direction; rl, radius. C, fit pitch; 2~p~, pitch; zls~, 
phase separation. O, end if i + M - l  =number of residues of protein. 

proteins we fitted is 0"55 A, with a s tandard deviation of 0"16 A. The best fit is for the 
haemoglobin a-subunit  (0"228) and the worst is for the southern bean mosaic virus protein 
(0-711: see Table 1). These are exceptionally good fits, lending support  to the val idi ty of 
the helical approximation.  

(d) Recognition criteria 

The best-fitting helix through the M points is recognized as par t  of an a-helix if the 
parameters  obtained from the algorithm do not differ from the expected values by more 
than about  10%. That  is, if: 

Ire-- 2"31 < 0"23, (8) 

[pc-  0.86l < 0-086, (9) 

and 

IzJse- 100~ 10 ~ , (10) 

then the M points of a-carbon atoms i to i + M - I are considered as part  of an a-helix. These 
and the other criteria tha t  follow can be relaxed or t ightened depending on how good the 
X-ray da ta  are and on how "pure"  a helix we require; hence, in part icular,  the algori thm 
may provide a valuable tool for analyzing preliminary X-ray  da ta  of proteins. 

Because of the great  variabi l i ty  of pitches of fl-strands, the pitch parameter  from the 
fitting turns out  to be useless for recognition. We find tha t  the single parameter ,  the radius 
r e, is sufficient to identify strands, with the criterion: 

r e < l ' 5  (11) 

(identifying s trands as "very thin helices"). This criterion, however, cannot distinguish 
isolated s trands from those which are genuinely par t  of a fl-sheet. This differentiation is to 
be carried out after the complete fitting of the protein, when all the " s t rands"  are 
identified. A pairwise (both parallel and antiparallel) matching of s t rands is performed and 
the average distance between matched a-carbon atoms from the 2 s trands is calculated. 
The calculation of  these inter-strand distances is done automat ical ly  by the algorithm, 
once the number of s t rands and their C~ ranges are provided. When the distance between 2 
s trands is less than about  8 A and the variance is small, the pair  of s t rands is considered as 
neighbouring and as par t  of a fl-sheet. This fl-structure analysis also determines t he  ‚ 
topologies (i.e. the orderings and orientations of ~-strands) with the information obtained 
on s t rand distances and parallel /antiparallel  pairings. See Richardson (1977) for a s tudy of 
fl-sheet topologies; we give examples of our fl-strueture analysis in the following sections. 
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Bends on the protein backbone are recognized as changes in axial angles of the fitting 
helices. The angles between consecutive helical axes, Vi and ~i+ 1 can be used to indicate the 
curving of the backbone in general, and the "straightness" of strands and helices in 
particular. 

The protein backbone also forms (reverse) turns with or without hydrogen bonds. These 
are recognized when 3 or more consecutive changes of axial angles are each greater than 
40 ~ (and add up to about 180~ Rose & Seltzer (1977) present an alternate approach to 
peptide chain turns. They consider the protein backbone as an ensemble of segments 
(LINCs in their, terminology) and hinges, and the hinges (i.e. turns) are the sites where 
their radius of curvature is small. 

I t  should be emphasized that none of our recognition criteria is based on the presence or 
absence of stabilizing hydrogen bonds, since only C~ information is used. This is a feasible 
explanation of why certain morphons we identify are not recorded in the official version 
stored in the Protein Data Bank. Furthermore, all segments of the complete backbone 
curve are represented on an equal footing: no distinction between regular and irregular 
regions is made. 

The recognition algorithm contains another option that can compare the relative spatial 
arrangements of all a-helices found. This is carried out by computing the distances and 
angles between the helix axes V;, in a pairwise matching just as is done for the fl-sheet 
topologies. 

Furthermore, the input data sets of atomic co-ordinates are not restricted to a-carbon 
atoms. One can use the entire N-C~-C backbone, the E-carbon atoms, the nitrogen atoms, 
the carboxyl carbon atoms, and so on. These other input data sets provide additional, 
more detailed information on the structures of proteins. 

3. Results and Discussion 

We have  analyzed 13 representa t ive  proteins  from the D a t a  Bank,  using our  
app rox ima t ing  a lgor i thm and the recognit ion cri teria given. The regular  regions 
(both a-helices, and fl-strands in the order  they  occupy the sheets) are listed in 
Table  1 together  with the accepted ranges, as listed in the  Prote in  D a t a  Bank.  
The goodness of  overall  fit GOF (average metr ical  deviat ion/residue) is given by:  

1 N 1 i + M - 1  
GOF=~ 5 -~ 5 [e](cylinder)+e~(pitch)]  �89 (12) 

i = l  j = i  

where the  e i t e rms  are the errors  (deviations) from the two sub-stages  of  helical 
fittings, M is the running segment  length, and h r is the  to ta l  numbe r  of  C~ 
residues of  the  par t icular  protein.  Note  t h a t  ei(cylinder ) measures  how well M 
points  fit onto  the  best  cylindrical surface, while ei(pitch ) determines  how 
regularly one can dis t r ibute  these points  along the best  helical segment  on this 
cylinder. We discuss three examples  in detail  to show how an analysis  is carried 
out,  and  to point  out  interest ing features.  

(a) An example: ferredoxin 

The ferredoxins are small i ron-sulphur  prote ins  t h a t  function as electron 
t r a n s p o r t  agents.  The  s t ruc ture  of  the  bacter ial  ferredoxin f rom Peptococcus 
aerogenes has been de termined  a t  2 A resolution (Adman et al., 1976), and we use 
this protein containing 54 amino acid residues as our  first example .  
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TABLE 1 

Comparison of sites of regular secondary structures of proteins 

Ferredoxin 54 Triosephosphate isomerase 247 

L&S Adman et al. (1976) L&S Banner  el al. (1975) 

al 14-18 
~2 39-44 

/]2 22-26 
I]3 33-27 
fll 1-6 
f14 53-49 

G O F  =0"630 

Secondary 
s t ructures  
not identified 

Staphylococcal nuclease 149 

L&S Arnone el al. (1971) 

al 54-69 
62 98-105 
~3 124-134 

/]3 31-37 
/]2 28-22 
/]1 6-19 
f15 79-71 
/]6 86-95 

/]4 38-45 
f17 112-108 

G O F = 0 " 5 8 6  

54-67 
99-106 

122-134 

30-36 
27-21 
12-19 

al 16-30 17-31 
~2 46-54 44-55 
a3 81-86 79-87 
a4 95-100 95-102 
o5 104-119 105-120 
a6 129-133 130-137 
~7 137-153 138-154 
a8 179-195 177-196 
a9 196-201 197-204 
~10 212-221 213-223 
a l l  237-244 237-246 

3101 232-236 232-236 

fll 3-12 6-12 
f12 35-44 36-42 
f13 57-68 60-63 
f14 85-93 89-93 
/]5 122-130 122-129 
/]6 158-167 159-167 
/]7 202-209 205-209 
/]8 226-232 227-231 

(ill) 

G O F  -- 0"501 

Haemoglobin a-subunit  141 

L&S Ladner  et al. (1977) 

~2 

a3 
a4 
~5 

3-18 3-18 
20-36 20-35 

36-42 
52-73 52-71 
75-80 
80-89 80-88 

87-92 
a6 94-112 ~8 
a7 118-138 118-138 a9 

Haemoglobin fl-subunit 146 

L&S Ladner  et al. (1977) 

�9 l 6-18 4-18 
a2 19-35 19-34 
a3 38-42 35-41 
�9 4 50-56 50-56 
~5 57-78 57-76 
�9 6 80-84 
~7 85-95 85-93 

92-97 
100-119  99-117 
123-143 123-143 

G O F  = 0"228 G O F  = 0"251 
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TABLE 1 (continued) 
151 

Cu, Zn superoxide dismutase 151 

L&S Richardson et al. (1975) 

Phospholipase 123 

L&S Dijkstra et al. (1981) 

al  130-134 

fll 2-11 
f12 24-12 
f13 25-36 
f16 100-93 
f5 80-90 
f4 48-39 
f17 113-117 
f18 151-142 
(fl) 

GOF = 0'705 

131-135 

4-9 
21-15 
27-34 
99-93 
80-87 
46-39 

113-118 
148-144 

al 1-13 

~2 39-58 
a3 58-65 
a4 89-108 

f l  72-79 
f12 86-79 

GOF = 0.421 

1-13 
17-22 
39-58 
58-66 
89-108 

74-78 
85-81 

Elastase240 

L&S Sawyer et al. (1978) 

Papain 212 

L&S Drenth et al. (1971) 

al 154-159 
a2 229-240 

fll 15-23 
f12 36-24 
f3 38-45 
f16 107-92 
/35 67-86 
f14 61-50 

(~1) 

f7 125-132 
f8 155-138 
f9 167-179 
ill2 226-219 
fil l  198-212 
ill0 197-189 

(f17) 

G O F = 0 . 6 6 7  

154-160 al 24-40 24-43 
229-240 a2 49-56 50-58 

a3 67-78 67-78 
14-22 a4 117-128 117-128 
35-25 ~5 139-144 137-143 
38-44 

101-93 f12 109-113 l l l - l l 2  
69-80 f17 212-204 208-206 
58-53 ~3 127-135 130-131 

f14 168-164 167-162 
f5 169-177 169-175 

124-135 f16 192-185 191-185 
153-139 
171-180 fll 3-7 5-7 
226-215 f4 168-164 167-162 
203-209 f5 169-177 169-175 
194-188 f16 192-185 191-185 

a O F  = 0"579 

a2 
a3 

~4 
~6 

~5 
f6 

Ribonuclease 124 

L&S Wyckoff el al. 

3-12 3-13 
24-34 24-34 
50-59 50-60 

42-49 41-48 
87-80 87-79 
93-103 94-104 

(1970) Southern bean mosaic virus protein 219 

Abad-Zapatero et al. 
L&S (1980) 

al  1-7 1-7 
a2 79-84 78-86 
a3 124-130 123-130 
a4 163-172 160-172 
a5 174-179 174-181 

42-49 41-48 
92-88 91-80 fll 
93-103 94-104 /32 

18-23 18-21 
23-30 24-29 
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TABLE 1 ( c o n t i n u e d )  
Ribonuclease 124 (continued) 

02 60-66 61-64 
03 77-71 75-71 
07 104-113 105-113 

119-114 

02 60-66 61-64 
03 77-71 75-71 
07 104-113 105-113 
08 124-119 124-121 

GOF = 0"606 

H. L O U I E  A N D  R. L. S O M O R J A I  

Southern bean mosaic virus protein 219 

(congnued) 

03 34-39 36-40 
04 5541 56-41 
012 197-217 199-214 
06 102-87 101-87 
09 142-147 139-147 
ill0 155-160 155-158 

05 59-67 58-67 
fill  192-181 193-183 
07 104-116 106-115 
08 138-133 138-132 

GOF tiO'711 

Immunoglobulin Fc fragment 206 Rhodanese 293 

L&S Diesenhofer (1981) L&S Ploegman el al. (1978) 

al 10-15 ~1 12-22 11-22 
�9 2 72-79 a2 42-50 42-50 
a3 117-122 ~3 76-88 76-87 
a4 176-183 ~4 107-119 107-119 

a5 129-137 129-137 
01 1-11 2-7 ~6 163-173 163-174 
02 28-18 27-19 a7 183-189 183-189 
06 61-73 62-72 ~8 224-236 224-235 
05 60-50 59-53 a9 253-264 251-264 

al0 275-282 274-282 
04 4448  45-47 
03 43-34 42-37 01 8-12 8-11 
07 78-90 81-88 06 121-128 122-127 
08 101-92 99-95 05 92-101 94-98 

02 28-38 27-33 
09 104-118 105-114 04 55-61 56-58 

fllO 134-124 136-125 08 160-164 160-162 
014 165-178 166-176 ill2 267-272 269-271 
013 161-153 161-153 fill  241-248 242-246 

09 175-181 177-181 
012 148-152 149-151 fllO 205-213 208-210 
Oil 146-139 145-140 
015 182-194 185-192 03 49-53 
016 206-197 206-197 07 136-159 

GOF=0.709 GOFtiO.549 

The name of each protein is followed by its number of amino acid residues. L&S=sites recognized 
by our helical approximations, with GOF=goodness of fit (average metric error per residue) in 
angstrSm units, a i t i the  ith s-helix. 31aJ t i the j th  31o-helix. ilk f the kth 0-strand (the 0-strands are 
arranged in the order of their sheet topologies with the sense of pairing; e.g. in ferredoxin, 02 22-26 is 
anti-paraUel to its neighbour 03 33-27, but is parallel to 01 1-6). The right-hand columns are the 
"official" sites as recorded in the Protein Data Bank and denoted by their original references. 

A he l i ca l  a p p r o x i m a t i o n  w i t h  s t e p  s ize  M - - 5  a n d  t h e  a b o v e  r e c o g n i t i o n  c r i t e r i a  

iden t i f i e s  f o u r  s t r a n d s  ( s - c a r b o n  a t o m s  1 t o  6, 22 t o  26, 27 t o  33 a n d  49 to  53) a n d  

t w o  s - h e l i c e s  (14 t o  18, 39 t o  44). B e n d s  a r e  i d e n t i f i e d  w i t h i n  t h e  f o l l o w i n g  

s e c t i o n s :  5 to  9, 16 t o  21, 23 t o  29, 31 to  37, 38 to  43 a n d  44 t o  50.  
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A pairwise matching of strands results in the following minimal distances: 

d(strand 1, strand 2)=parallel, 11"2 A 
d(strand 1, strand 
d(strand 1, strand (13) 
d(strand 2, strand 
d(strand 2, strand 

3) =antiparallel, 7"2 A 
4) =antiparallel, 4"8 A 
3) = antiparallel, 4"8 A 
4) =antiparallel, 14"5/~ 

d(strand 3, strand 4)=parallel, " 10"4 A. 

We therefore conclude that all four strands are parts of an antiparallel fl-sheet 
with strands 1 and 3, 1 and 4, and 2 and 3 neighbouring. The distances also 
determine the relative positions of the fl-strands. The fl-sheet of ferredoxin is 
shown in Figure 3(a) and (b). 

2 3 4 

\ 

i " ,  p, ! 
\ f \  / \ / \ ,J 

I-4"8-1--- 7 .2 - - { -4 ,8 -1  

3 
4 "8"~-"~ JO'4 

2 ~ ,,.~ ~ L . ~ . ~ .  

I 

I 14.5 I 

p2 

J33 

I al 

a2 

(o)  (b)  (c )  

Fro. 3. Ferrodoxin. (a) Side view offl-sheet. (b) Top view offl-sheet. (c) Schematic native structure. All 
o . .  

distances shown are in angstrom units. 

Incorporating the information we obtained on s-helices and bends into the 
above, we derive the three-dimensional native structure of ferredoxin (Fig. 3(c)). 
This, of course, agrees with the accepted structure. 

(b) A second example: triosephosphate isomerase 

The enzyme triosephosphate isomerase (EC 5.3.1.1) catalyzes the interconver- 
sion of dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate. The 
atomic co-ordinates of this protein from the chicken breast muscle have been 
determined crystallographically at 2"5 A resolution (Banner et al., 1975). A 
monomer of the triosephosphate isomerase molecule contains 247 amino acid 
residues. 

Our helix-fitting algorithm with M = 5  identifies 12 strands. Among these 12 
candidates, there are eight that  have an average distance less than 8/~ from 
another strand in a pairwise matching. From this result (shown in Fig. 4(a)), we 
can readily deduce that  the fl-structure of triosephosphate isomerase is a barrel 
consisting of eight parallel fl-strands. 
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5 4 5 6 7 8 I 
'1' 

6"5 5-4 7"8 5-4 4'8 6"0 6-0 5"5 

(a) 

BI ,82 B3 ,84 e4 B5 a6 .B6 a8/5'7 Be BI 

el a2 a3 a5 a7 a9 alO a l l  

(b) 

Fro. 4. Triosephosphat~ isomera~e. (a) Parallel/3-barrel; strand 1 (3-12), strand 2 (35-~), strand 3 
(57-68), strand4 (85-93), strand5 (122-130), strand6 (158-167), strand7 (202-209), strand8 
(226-232). All distances shown are in ~ngstrSm units. (b) Schematic native structure. 

Eleven a-helices are recognized (a-carbon atoms 16 to 30, 46 to 54, 81 to 86, 95 
to 100, 104 to 119, 129 to 133, 137 to 153, 179 to 195, 196 to 201,212 to 221 and 
237 to 244). Note that  the a-helices lie between fl-strands, forming a sequence 6f 
the so-called flail-units (Schulz & Schirmer, 1979). 

Of special interest is the section of the protein backbone from a-carbon atoms 
232 to 236. This is a helix of radius r=1"95 and pitch p = l ' l  (corresponding to 
K = 0"39 and �9 = 0"22). This is a 3 l o-helix (the theoretical values of the parameters 
being r = l ' 9 ,  p=0"95, K=0"42 and T=0"21). The native structure of 
triosephosphate isomerase according to our helical approximation is shown in 
Figure 4(b), again agreeing well with the accepted structure. 

(c) A third example: staphylococcal nuclease 

The phosphoric diester hydrolase staphylococcal nuclease (EC 3.1.4.7; Arnone 
et al., 1971) provides us with an example in which we can analyze the bending and 
relative displacement of fl-strands. When this protein, which contains 149 amino 
acid residues, is approximated by helices with M--5,  seven strands are 
recognized. They are the sections with a-carbon atoms 6 to 19, 22 to 28, 31 to 37, 
38 to 45, 71 to 79, 86 to 95 and 108 to 112. The neighbouring relations and 
distances are as follows: 

d(strand 1, strand 2)=antiparallel, 5.9/~ 
d(strand 1, strand 5)= antiparallel, 6-3/k 
d(strand 2, strand 3) = antiparallel, 5-4/~ (14) 
d(strand 4, strand 7)= antiparallel, 5" 1/k 
d(strand 5, strand 6)=antiparallel, 4"8 A. 
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Since there is considerable variation in strand lengths (e.g. strand I has 14 
residues, while strand 2 has 7), the relative displacements of strands (i.e. the 
pairwise matehings that give the smallest distances) are also important factors in 
determining the fl-sheet topology. Furthermore, for the long strand I (a-carbon 
atoms 6 to 19), successive increases of the angle between V i and ~o along the 
strand {Fig. 5(a)) show that it is bent. The large change in axis angle (~  l l 0  ~ at 
a-carbon atoms 37-38 shows that there is a bend between strands 3 and 4. The 
‚ of staphylococcal nuclease according to our algorithm is shown in 
Figure 5(b). 

120 

I00 

'I ~ 80 

.1 ~" 60 

40 

�89 ao 
0 

6 9 12 15 

Residue / 

I 

zr / z , ' - - - - - ~ ,  I ~, 6 

(o) (b) (c) 

Flo. 5. Staphy]ococcal nuclease. (a) Bending of B-strand 1 : residue i v e r s u s  angle between axes ~ and 
V6. (b) fl-structure with optima! matching of strands. (c) Schematic native structure. 

Three a-helices are identified: a-carbon atoms 54 to 59, 98 to 105 and 124 to 
134. These lie between strands 4 and 5, between 6 and 7, and after 7, respectively. 

It  is important to note that  although Table 1 lists only the regular regions of 
the proteins and our analysis of proteins is based on the locations of these regular 
a and fl-regions, our algorithm does treat all regions of the proteins equally in the 
fittings. We just saw how the irregular bends provide information on the 
structure of the fl-sheet of staphylococcal nuclease. For completeness and for a 
comparison, Table 2 shows the bends (and turns) identified on this protein by our 
algorithm, v e r s u s  those identified by Rose & Seltzer (1977). Bends at residues 
81-82 and 90-91 are not identified by us because their bend angles (20 ~ and 35 ~ 
respectively} do not exceed our 40 ~ threshold. In other words, these are slight 
bends. 

The complete native structure of staphylococcal nuclease by helical 
approximation is as shown in Figure 5(c). 

These examples illustrate that the algorithm is simple, yet  powerful enough to 
identify complicated topological features, as well as providing new assignments of 
regular regions. Table 1 contains some discrepancies between morphons we 
identify and the official versions. For example, for staphylococcal nuclease the 
Protein Data Bank only records the three a-helices with E-strands 3, 2 and half of 
1. Thus only the "front half" of the fl-sheet (f13, 2, 1, 5, 6) is identified there. Also, 
f14 and f17 are identified by us and not by them, and this is probably due to the 
criterion of hydrogen bonding that we mentioned before. There are morphons 
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TABLE 2 
Comparison of bends (and turns) in staphylococcal nuclease 

L&S~ Rose & Seltzer (1977) 

5-7 5-6 
15 15 
20-21 20 
28-30 28-29 
38-39 38-40 

45 45-49 48 
53-54 53-57 
69-7O 7O 
78-80 79 

81-82 
85-87 85 

90-91 
95-96 95 

100 100 
106-108 107 
117-118 116 
120 120-124 
135-136 135-136 
138-140 

t Sites recognized by our helical approximations. 

picked out  by  the Data  Bank (e.g. a-helices 36 to 42. and 87 to 92 on the 
haemoglobin a-subunit) but  not  recognized by our  algori thm because the 
parameter  values fall outside the range specified by the inequalities (8) to (10). 
Thus, these are probably ra ther  " irregular"  structures.  Other  similar 
discrepancies can be likewise explained. 

In  the next  section, we proceed with the detailed il lustration of the next  phase 
of the algorithm. 

(d) Stepped-helix with minimal partition 

After an initial helix-fitting with M = 5 and with the different morphons of the 
protein backbone identified, we can par t i t ion the protein curve into s tructural  
sections. Le t  us use the 141-residue a-subunit  of  haemoglobin (Ladner et al., 1977) 
as an illustration. 

The fitting algorithm identifies seven a-helices a t  a-carbon positions 3 to 18, 20 
to 36, 52 to 73, 75 to 80, 80 to 89, 94 to 112 and 118 to 138, a single s t rand (hence 
not  par t  of a fl-sheet) a t  45 to 50, affd bends in between the regular segments of 
this antiparallel a-domain protein. Thus the backbone of  haemoglobin a-subunit  
has the minimal par t i t ion (in terms of the a-carbon residue number  instead of the 
arc-length): 

{a~}={1, 3, 18, 20, 36, 40, 45, 52, 73, 75, 80, 89, 94, 112, 118, 138, 141}. (15) 

The par t i t ion  point  a5=40 is added to subdivide the  long loop 36 to 45 into 



H E L I C A L  A P P R O X I M A T I O N S  O F  P R O T E I N S  157 

shorter intervals for better helix-fitting. This partition is termed minimal to 
denote the minimal number of structural sections. This number is commensurate 
with the requirement that  the accuracy of sectional fitting be reasonably uniform 
over the whole length of the curve. 

The same two-stage cylinder-pitch fitting algorithm is then applied to each of 
the intervals [a i_ 1, a:]; i.e. a-carbon atoms a t_ 1 to a i. The resulting Ki and 7t 
values constitute the step-constants in the approximation of the pair (K, r) in 
C(I, R2), which represents the protein backbone. Figure 6 shows the curvature 
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FI(~. 6. (a) Curva ture  and (b) torsion of the  space curve represent ing haemoglobin ~-subuni t  ( . . . . . .  ) 
and of the  approx imat ing  step helix with minimal  par t i t ion  ( ). 

and torsion of the space curve of haemoglobin a-subunit, with the sequence of 
(Ki, 7t) values of the best-approximating stepped-helix. 

I t  is interesting to compare the goodness-of-fit (per residue) from different 
fittings. With the first sequential fitting using a sliding sectional length of M = 5, 
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GOF=0"228. The error increases as M increases: for M=6,  7, 8, 9 and 10, 
GOF--0.332, 0"443, 0"505, 0"595 and 0.715, respectively. With the minimal 
partition (14), since longer sections are involved, we obtain a GOF value of 0.441, 
which is, incidentally, a better fit than the GOF value of 0.477 obtained from the 
partition using the official Protein Data Bank sections. 

This secondary fitting by stepped-helix with a partition also provides 
information on the bending of the path of the protein backbone. The direction ~l 
of the helical axis on [ai-1, ai] gives the direction of that  section of the space 
curve. The sequence of triples (ri, Pi, V~) can be used to construct the stepped- 
helix: on the interval from ~-carbon a i_ l to s-carbon a i, the helix has radius ri, 
pitch 2~pi, and axial direction ~i. 

(e) General stepped-helices 
The basic principle underlying the approximation of protein backbone by 

stepped-helices (recall Theory and Methods, section (a)) is that  any given 
mapping (K, r) in C(I, R 2) can be arbitrarily closely approximated by mappings in 
S(I, R2), because the uniform closure of the subset S(I, R 2) contains C(I, R2). 
Any other subset of C(I, R 2) that  has this property will of course fulfil the role of 
an approximating basis set as well. What is special about the stepped-mappings 
S(I, R ~) is that  the corresponding space curves, the stepped-helices, are easy to 
describe and analyze as geometric objects. A subset of C(I, R 2) that  contains 
S(I, R 2) in turn as a subset would be an approximating basis set, and it would 
also retain the special role of stepped-helices without being limited to helices with 
circular cross-sections. A natural such subset is the set H(I, R 2) of all pairs (K, T), 
for which partitions {ai} exist with the property that  on each subinterval 
(ai-1, ai), the ratio r is constant (where Kr 0, and r =  0 whenever K= 0), without 
either r or K(s) being independent of s. 

A space curve that  has a constant torsion-to-curvature ratio is a general helix. 
A space curve is a general helix if and only if there is a fixed vector in space, 
called the axis of the helix, such that  the angle 0 between the tangent vectors and 
the axis is constant. In fact in this case: 

r/~=cot0, (16) 

and the general helix has a canonical representation of the form: 

:X(s)=(xl(s), x2(s), s cos0), (17) 

where the z-axis is the axis of the helix. Note that  the circular helix (5) is a 
general helix with: 

p=cos0. (18) 

Thus a mapping in H(I, R 2) with sectionally constant r ratios gives a space 
curve that  is a general stepped-helix. The axial directions of the sections are well- 
determined, so can again be used to describe the bending path of the-protein 
backbone. Since on each subinterval the space curve is not confined to a circular 
cylinder, there is more flexibility and hence a better fit in the approximation of 
proteins by general stepped-helices. 
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(f) Elliptic helices, helicoids and catenoids 
The simplest natural extension of the set of circular helices is the set of elliptic 

helices; i.e. helices that  lie on cylinders with elliptic cross-sections. An elliptic 
helix has the equation: 

:~(s) = (a coss, b sins, ps), (19) 

where a~b are the semi-major and semi-minor axes, and 2~rp is the constant 
pitch. Associated with elliptic helices, there is a parameter that  describes the 
twist of protein backbones. The twist along the curve is defined as the angle 
between the elliptic axes of consecutive helices. 

Our helix-fitting algorithm has been modified to use elliptic helices as the 
approximating basis set. The first step (the Levenberg-Marquardt method) was 
changed to find the best-fitting elliptic, instead of circular, cylinder. Two 
additional parameters have to be estimated: the pair (a,b) (replacing the radius r), 
and the new twist parameter 4. Elliptic-helical approximation of a typical a-helix 
(e.g. a-carbon atoms 16 to 30 of triosephosphate isomerase) yields values for a 
and b between 2.1 and 2"5 A (with a geometric mean x/ab.~2"3 A) and a small 
twist value of less than •  ~ . Other parts of the protein backbone give larger 
differences in the a and b values, and larger twist parameters. The GOF value for 
elliptic-helical approximations is typically about 10~/o smaller than that  of 
circular-helical approximations, since more parameters lead to more degrees of 
freedom and hence better fits. In fact the GOF values shown in Table 1 
correspond to elliptic-helical fits. We feel that  the relative values of a, b and ~b 
reflect the nature of the side-chains, and that  the correlations between the 
ellipticity and the twist of the protein backbone and the bulk and packing 
properties of the amino acid residues are significant. These questions are under 
investigation. 

Another approximating basis set can be formed by general helices-with- 
constant-pitch (eqn (17)). These general helices lie on the surface of a helicoid 
(Fig. 7(a)), and this fact establishes a connection between this paper  and our 

. =  

(a) (b] 

Fro. 7. (a) Helicoid with constant-pitch general helices. (b) Catenoid with catenoidal helices. 
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earlier paper (Louie & Somorjai, 1982) on  proteins as geodesics on minimal 
surfaces, in which we represent (circular} helices as space curves on the surface of 
a helicoid. 

General helices on the surface of a catenoid (Fig. 7(b)), the conjugate surface of 
the helicoid (Louie & Somorjai, 1982, section 6), can also be used as an 
approximating basis set. This basis set works especially well for fl-barrels, since 
these can be represented well as catenoids. For  example, the eight-strand parallel 
fl-barrel of triosephosphate isomerase is a eatenoid with waist diameter 10 A, and 
the strands make the constant  angle of 0=  35 ~ with the axis of the barrel. Thus 
the eight fl-strands of this protein can be represented as "catenoidal helices". 

An elliptic catenoidal helix has the equation: 

:X(s) = (a cosh(qs)coss, b cosh(qs)sins, ps), 

which lies on the elliptic catenoid: 

(20) 

x 2 y2 2 Z 
a-~ + ~-  = cosh c '  (21) 

where c=p/q. Thus, the eight-strand barrel can be described on two levels as 
follows. The eight strands can be fitted individually by the elliptic catenoidal 
helix (eqn (20)), resulting in eight sets of values of the parameters (a, b, p, q), from 
which a set of average values (a, b, p, q) can be calculated. On the other hand,  
the co-ordinates of all the C, atoms on the eight strands can be fitted onto the 
surface described by equation (21), hence one obtains a set of values (d, 6, ~). The 
accuracy of the equalities: 

5=d, b=b,  /~/qT=~, (22) 

can then be used to determine how well the eight strands fit on a catenoidal 
barrel. 

Equat ion (21) reduces to the equation of an elliptic cylinder: 

x 2 y2 
~-  + ~-y = 1, (23) 

when c ~  ~ .  Thus an a-helix, for example, can be described as a catenoidal helix 
with a,b,.~2"3 A and c ~ .  As an illustration, again consider the a-helix 16 to 30 
of triosephosphate isomerase. The best-fitting elliptic catenoid has parameters 
a=2-40,  b=2-27 and c>106. An advantage of using catenoidal helices as the 
approximating basis set is tha t  the same set can be used to describe secondary 
structures and certain supersecondary structures, such as the supercoiling and 
bundles of a-helices {e.g. see Weber & Salemme, 1980) and the fl-barrels 
mentioned above. In other words, catenoidal helices provide "prior indicators" 
for the type of surfaces onto which the protein curves are wound; i.e. they form a 
universal basis set for the description of morphological pat terns of protein 
backbones at  two hierarchical levels: space curves and surfaces embedded in • 3. 

(g) Implications for protein energetics 
We suggested previously (Louie & Somorjai, 1982) a generalized Fermat ' s  

principle, tha t  "energy propagation along protein molecules takes paths of critical 
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time". This principle has particular significance for helices, since a helix is a 
geodesic (shortest curve) on a cylinder as well as an asymptotic curve ("fastest" 
curve) on a helicoid. Thus helices are analogues of straight lines in the surface 
geometry of proteins, in that  they provide both shortest and fastest paths for 
energy transfer. This dual description of helices again gives them a special role; 
indeed, a helix with radius r and pitch 2~rp is the curve of intersection of a 
cylinder with radius r and a helicoid with pitch 2~rp. Approximations of proteins 
by stepped-helices, therefore, may provide the natural geometric tools to analyze 
proteins in dynamical terms as well. The reader is referred to Louie & Somorjai 
(1982) for a detailed discussion of the concepts presented in this paragraph: 

The motion of helical curves is intimately related to the propagation of solitons. 
I t  has been shown (Lamb, 1976) that  the intrinsic equations governing the 
curvature and torsion (i.e. the Frenet equations that  establish the fundamental 
theorem of space curves) of a helix can be reduced to a non-linear SchrSdinger 
equation. The single-soliton solution of this equation provides a description of the 
response to excitation of a helical curve. Furthermore, the sine-Gordon equation 
is association with curves of constant curvature, and the modified Korteweg-de 
Vries equation is associated with curves of constant torsion. These constants play 
the role of the eigenvalue parameters in the inverse-scattering method. (See Scott 
et al. (1973) for an introduction to solitons.) 

The connections between solitons and the motion of helical curves have been 
studied by Davydov (1973,I977,1979) in the context of energy transfer along 
a-helices of proteins. I t  was found that  a-helices contract under the excitation of 
their peptide groups. In the region of excitation, the pitch of the helix decreases 
and the contracted region moves along the direction of the axis at a rate 
proportional to the energy of interaction of the residues. A numerical analysis of 
Davydov solitons on a-helices has been presented by Scott (1982). A major reason 
why only a-helical proteins were investigated until now is that  these provide the 
"obvious" helices; non-a-helical regions were not considered. Since in our 
approach all regions of a protein molecule are identified as (approximate) helices 
of various radii and pitches, the idea of soliton propagation along helices can be 
applied to the whole protein backbone. In fact, this extension takes on a new 
significance in terms of the excitation of active sites on enzymes. Since the energy 
of the excitation and the rate of propagation of the soliton are related to the 
curvature and torsion of the carrying helix, it is possible to consider 
concentration of energy at  certain specific sites of proteins. In other words, the 
rate of energy transfer (i.e. soliton propagation) along a protein backbone is 
modulated by the non-constant character of its approximating helical curve, 
creating local maxima and minima in the energy distribution at specific (helical) 
sites, with possible trapping at appropriate regions. These ideas may provide the 
coneretization of the qualitative concept of entatie states, according to which the 
active sites of enzymes are locally excited relative to the rest of the molecule, thus 
facilitating the creation of the productive transition state. We shall discuss this 
circle of ideas in more detail elsewhere. 

This paper is recorded as NRCC no. 20967. 
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