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A model for enzymic catalysis is presented using the mathematical theories of differential 
geometry and Stieltjes integration. The Stieltjes integrator is a complex-valued function 
of bounded variation which represents the curvature and torsion, hence the conformation,  
of the backbone of an enzyme molecule. The integrand is a complex-valued continuous 
function which describes the shape of  the surface of a substrate molecule. We postulate 
that enzyme-substrate  interactions correspond to evaluations of Stieltjes integrals, and 
that  observables of enzymic catalysis correspond to projections. 

Results from the mathematical  theory of  the Stieltjes integral are discussed together 
with their biological interpretations. We contrast the difference between structural and 
functional proteins, and construct analogues of enzyme cofactors, modifications, and 
regulation. Various techniques of locating the active site on enzymes are also given. We 
construct a total  variation metric, which is particularly useful for detecting similarities 
among proteins. 

An examination on the many different modes of convergence of mathematical func- 
tions representing biological molecules leads to a mathematical  statement of the funda- 
mental dogma of molecular biology, that 'structure implies function' .  Similar arguments 
also result in the converse statement ' function dictates structure',  which is a basic premise 
of relational biology. 

Stepped-helical approximations of the backbone space curves of enzymes provide a 
concrete computat ional  tool  with which to calculate the Stieltjes integrals that model 
enzymic catalysis, by replacing the integral with a finite series. 

The duality between enzymes and substrates ( that  they are meters 'observing' one 
another) is shown to be a consequence of the mathematical  duality of Banach spaces. 
The Stieltjes integrals of enzyme--substrate interactions are hence shown to be bounded 
bilinear functionals. The mechanism of  enzymic catalysis, the transformation from sub- 
strate to product ,  is also formulated in the Stieltjes integration context  via the mathe- 
matical theory of adjoints. 

The paper closes with suggestions for generalizations, prospects for future studies, and 
a review of  the correspondence between mathematical  and biological concepts. 

I.  I n t r o d u c t i o n .  R e c o g n i t i o n  a n d  i t s  c o r r e l a t e ,  d i s c r i m i n a t i o n ,  a re  i m p o r -  

t a n t  c o n c e p t u a l  c o r n e r s t o n e s  fo r  t h e  u n d e r s t a n d i n g  o f  t h e  s p e c i f i c i t y  and  

c o n t r o l  o f  b i o l o g i c a l  s y s t e m s  a n d  p r o c e s s e s .  E n z y m e s  p r o v i d e  o u t s t a n d i n g  
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examples, with their capability of recognizing specific substrates and their 
precision in discriminating between molecules on the basis of  differences in 
some structural features. 

The selectivity of  an enzyme is, to a large degree, related to the three- 
dimensional conformation of its molecular structure, which must be main- 
tained to retain biological activity. Furthermore, activity is usually associated 
with a particular site in the catalytic p ro t e i n - - t he  active s i t e - - and  any 
factor which produces a distortion of  this site can interfere with the 
enzyme's function. 

Enzymic catalysis proceeds through the intermediate formation of  an 
enzyme-substrate complex, within which rearrangements of the substrate 
take place to yield products, simultaneously reforming the native enzyme. 

An important feature of  biological recognition systems is their finite 
power of  resolution. Even the most discriminating enzyme can occasionally 
be 'tricked' by molecules resembling its substrates: competitive inhibitors 
vie with natural substrates for the binding to an enzyme. 

These are some of  the important features of  enzymic catalysis. We present 
an abstract mathematical model of  enzyme function which captures these 
characteristic features. The differential geometry of  proteins we discussed 
in earlier papers (Louie and Somorjai, 1982, 1983) is used as a mathematical 
tool. The theory itself is derived from the Edelstein-Rosen (1978) model of  
enzyme-substrate recognition. 

2. The Edelstein-Rosen Model. A model for enzyme-substrate recognition 
is presented in Edelstein and Rosen (1978). The theory rests on the follow- 
ing two postulates: 

(1) Substrates can be represented by real-valued continuous functions 
which vanish outside some closed bounded region in 113; i.e. substrates 
are represented by elements F E C(K, 11), the space of  all real-valued 
continuous functions on K, where K is a compact subset of  113, chosen 
to be large with respect to molecular dimensions. 

(2) Recognition of  the substrate corresponds to the evaluation of a linear 
functional on C(K, R ). 

- - o r  what is equivalent: 

(2') Associated with a given enzyme is a function a in the dual space of  
C(K, 11 ), i.e. o~ E NBV(K, 11 ), the space of  all real-valued, normalized 
functions on K of bounded variation, and recognition of  a substrate F 
results from the evaluation of  a Stieltjes integral o f  the form f F doc 

(The equivalence of (2) and (2') is due to a theorem in functional analysis 
known as the Riesz Representation Theorem, which will be discussed in 
Section 5.) 



These postulates are summarized in Fig. 1. 
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Figure 1. 

F E C(K,]R ) 

I 
�9 f F d o ~  

I 
~oL E N B  V(K ,  11) 

The representation of  molecules by  continuous functions and functions 
of  bounded variation on a compact  subset K of  three-dimensional space is 
a natural one, in keeping with the usual conception that molecules are three- 
dimensional objects with 'shapes', occupying definite regions of  space. 
Edelstein and Rosen (1978) suggested that molecules can be viewed 'as con- 
tinuous three-dimensional distributions (of  charge, mass, or other unspeci- 

f i ed  physical parameters)' ,  and it is through these 'complex combinations 
o f  physical parameters, some of  which are not necessarily observables to our 
microscopie meters', that the correspondences S ~, F, e ~ ~ are derived. 

While the Edelstein-Rosen theory encompasses some of the features of  
enzyme-substrate  recognition we mentioned in Section 1, it remains unclear 
how  the correspondences S ~ F, e ~ ~ can be mathematically formulated. 
In the following sections we propose such a formulation, as well as extend 
the modelling to at least some aspects o f  discrimination and catalysis per se. 

This concretization depends importantly on being able to represent proteins 
as bona fide geometric objects. 

3. Geometr ic  Representat ions  o f  Proteins. In our continuing study of  the 
differential geometry of  proteins (Louie and Somorjai, 1982, 1983), a pro- 
tein molecule is regarded as a geometric object. In a first approximation, a 
protein molecule is represented as a regular parametrized space curve which 
passes through the Ca-carbons. According to the fundamental theorem of  
space curves, such a curve is characterized uniquely, except for position in 
space, i.e. up to a rigid motion, by two continuous functions of  the arc- 
length s E I = [a, b] C 11 along the curve, the curvature ~ >~ 0 and the 
torsion r. In particular, the collection of  space-curve representations o f  
conformations form a subset o f  C(I,  1112), the class of continuous mappings 
from I to 112. 

The pair (~, r) o f  real-valued continuous functions immediately suggests 
the alternate description a = ~ + i t .  Thus the collection of  protein backbone 
conformations can be considered as a subset o f  C(I)  = C(I, ~" ), the class of  
complex-valued continuous functions on I. In Louie and Somorjai (1983) 
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we showed that the helical approximations of  space curves provide a valuable 
tool to analyze protein patterns. To expand the class of  protein backbones 
to include stepped-helices (connected sequences of  helices), we shall relax 
the restriction on ~ + ir and only require it to be sectionally continuous. 
Furthermore, since protein backbones are 'well-behaved' space curves in 
which mathematically 'pathological' conditions (e.g. infinite length, un- 
bounded derivative, etc.) do not  occur, we can assume without loss of  gener- 
ality that a = ~ + iv, representing a protein conformation, is also a function 
of  bounded variation. Note that a sectionally constant ~ + it, which corres- 
ponds to a stepped-helical protein backbone, is both  sectionally continuous 
and of  bounded variation. 

We summarize this section in the following: 
Postulate O. The three-dimensional conformation of  a protein backbone 

is represented by a complex-valued function of  a real variable, a = ~ + it: 
I C l t - ~ C ,  which is sectionally continuous and has bounded variation. 

4. Complex Stielt/es Integration. In order to make the mathematical basis 
of  the ensuing discussion self-contained, we need a digression on the funda- 
mentals o f  the Stieltjes integral. The exposition will be limited to those 
results essential for a cogent representation of  the mathematical biology of  
enzymic catalysis. More comprehensive treatises of  the Stieltjes integral can 
be found in Widder (1946), Burriil and Knudsen (1969) and Rudin (1976). 

A function ~: I ~ C ,  for I =  [a, b] C ~ ,  is of  bounded variation if there is a 
constant M >~ 0 such that for every parti t ion P = {a = So < s 1 < �9 �9 �9 < sn = b} 
o f /  

n 

Ve(a) = ~ [a(sk)--a(Sk_l)l<-M. (1) 
k = l  

The total variation of  or is defined by 

V(a) = sup(Vp(~): P a partition o f / ) .  (2) 

Clearly, V(~) ~< M ~< oo. a is o f  bounded variation if and only if Re ot and 
Im a are of  bounded variation, and 

V(a) <~ V(Rea)  + V(Ima) .  (3) 

An important property of  a function of  bounded variation is that it possesses 
limits both from the right and from the left at all points o f  [a, b].  Thus if 
a is a function of  bounded variation on [a, b],  the limit or(s--) o f  a from the 
left and the limit a(s+) of  a from the right exist for every s E [a, b ]. (Define 
o~(a - )  = ~(a) and a (b+)  = a(b).) Moreover, a function of  bounded variation 
can have at most countably many discontinuities. 
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For complex-valued functions F and ~ on I, the (Riemann-) Stielt]es 
integral of  F with respect to o~, denoted by 

F dol, (4) 

I 

is the limit, if it exists, o f  sums o f  the form 

?l 

~. F(s~)[c~(sk) -- U(Sk-1)], (5) 
k=l  

where P = {a = So < s l < . . .  < Sn = b} is a partition of  I, each s~ E [Sk-l,Sk], 
and the limit is taken over partitions for which 

max{Isk--sk_l I: 1 <.k<.n)-+O. (6) 

F is the integrand, and c~ is the integrator. 
If F E C(/) and ~ is of  bounded variation on I, then f F d ~  exists. In fact 

I 

(., .>. (F, ~) ~ fFda  (7) 
I 

is a bounded bilinear functional, with 

I 

where 

liP I1~ = sup(IF(s) l ' s  E I )  (9) 

is the supremum (L =-) norm on C(/ )  which turns the latter into a Banach 
space. 

5. The Dual Space'of C(1). It follows from above that if o~ is a complex- 
valued function o f  bounded variation on I and 

&(F) = (F, a) = fFdcx (10) 
I 

for all F E C(/), then & is a bounded linear functional on C(/), i.e. ~ E C(/)*, 
and 

116 II < v (~) ,  (11 ) 

where II~ II is the operator  norm of  & defined by 

[[& [[ = sup { [&(F) I : liE II~ ~< 1 }. (12) 
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However, the correspondence between bounded linear functionals on C(I) 
and functions o f  bounded  variation on I is no t  one-to-one. Indeed, if  
a < c  < b  and 

0 ifs--/:c 
3'(s) = (13) 

1 i f s = c  

then f F d a  = 0 for all F E C(I), and V(3') = 2. Thus if  one is interested 

only in that  linear funct ional  which a funct ion o f  bounded variation defines 
on C(I), then  3' and 0 are equivalent, or more precisely, "~ = 0. In order to 
avoid ident i fying the dual space o f  C(I) with equivalence classes o f  functions 
o f  bounded  variation, a 'normalized '  representative f rom each class is chosen. 

Let NBV(I)  denote  the space o f  all complex func t ions  on I = [a, b] which 
are o f  bounded variation on I, which vanish at a, and which are cont inuous  
from the left on (a, b). If  a is a funct ion of  bounded variation on I, then the 
funct ion o~ N, defined by 

OLN(S ) = 

0 i f s  = a 

a(s--)  -- a(a) i f s  E (a, b) 

a(b) -- a(a) i f s  = b 

(14) 

is a normalized funct ion o f  bounded  variation, i.e. aN E NBV(I) ,  

v(~u) < v(oO, 

and 

(15) 

F d o t  N = /Fda (16) 
I I 

for all F E C(/) ,  i.e. &N = a. 
With respect to pointwise addit ion and scalar mult ipl icat ion,  NBV(I)  

is a linear space, and with the norm II" II v = V( ' ) ,  NB V(I) is a Banach space. 
Further ,  we have the 

RIESZ REPRESENTATION THEOREM.  The mapping 

a ~ =  f 'do~ (17) 
! 

is an isometric isomorphism between the Banach spaces NB V (I) and C(I)*. 



STIELTJES ENZYMES 751 

In particular, the total variation norm of  a and the operator  norm of  6~ co- 
incide: 

Ila IIv = I1~ II. (18) 

6. Functional Representations of Substrates. While it is relatively straight- 
forward that the conformation of  a protein molecule, hence an enzyme, can 
be represented by the function a = r + ir E NBV(I) describing the back- 
bone space curve, a geometric model for substrates is less apparent. For 
those 'string-like' substrates which have well-defined 'backbones' ,  a similar 
space-curve argument leads to the F = ~: + iT representation. But such a 
continuous function F has as its domain a real interval J C JR, which is not 
necessarily the same as the domain I of the a-representation of  its recog- 
nizing enzyme. Thus a 'scaling function'  3': I -+  J must be composed to F, 
resulting in the continuous function Fo3" E C(I) portraying the 'shape' of  
the substrate. 

With this motivation, we can formulate a geometric model for substrates. 
When we say it is the 'shape' o f  a substrate which is identified by an enzyme, 
we of  course mean the 'surface geometry' .  Consequently,  a natural represen- 
tation of  a general substrate is a surface embedded in three-dimensional 
space. A regular surface F in l~a is a two-dimensional object,  hence para- 
metrized by two real variables with domain d o m F  C 1~ 2. Again identifying 
•2 with C,  we can now investigate the possibility that the range of  the func- 
tion a E NBV(I) representing an enzyme is contained in d o m F .  If indeed 
a(I) C dora F C C, then F o a  E C(I), and the Stieltjes integral 

f Foa da (19) 
I 

can be evaluated. (In fact, in complex analysis, the integral (19) is the line 
integral of F along a.) In this case, the substrate can be described alterna- 
tively by  the continuous function F�9 

The condition a( I )  C d o m F  has the interesting biological interpretation 
that since the representation of  the enzyme a falls within the domain of  
the substrate F, the substrate F recognizes the enzyme a. This reversal 
of  roles depicts the symmetry of  the theory of  enzyme-substrate  recog- 
nition, and this duality of  enzymes and substrates will be discussed in 
Section 12. 

Thus we see that a general substrate can be portrayed as a continuous 
function over an appropriate real interval. For  simplicity we can choose a 
'universal' interval I = [a, b],  large enough for the molecular dimensions of  
all substrates and enzymes. The functional representation of  a molecule 
then has as its support  J C I, and has the value zero on I "" J. Again for 
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generality, we shall occasionally also consider sectionally continuous func- 
tions on I as substrates. 

7. Enzyme-Substrate  Integration. We now state explicitly the postulates 
of our model of  enzymic catalysis. 

Postulate 1. Substrates are represented by complex-valued continuous 
functions which vanish outside some closed bounded subset of  I~.; i.e. sub- 
strates are represented by elements F E C(I), where I is a compact interval 
in 11 chosen to be large with respect to molecular dimensions. 

Postulate 2. Enzymes are represented by complex-valued normalized 
functions of  bounded variation on L i.e. by elements ot E NBV(I ) ,  hence 
by linear functionals & E C(I)*. 

Contrasting our Postulates 1 and 2 with the Edelstein-Rosen postulates 
in Section 2, we see that our substrates and enzymes are functions from 
I C 11to (', while theirs are from K C 1t 3 t o l l .  

Postulate 3. Enzymic catalysis, the interaction between an enzyme and a 
substrate, corresponds to a mathematical coupling of  F and o~, via the evalua- 
tion of  the Stieltjes integral 

(F,a)  = fFda. (20) 
I 

The Stieltjes integral yields a complex number. In accordance with the 
convention that every observable can be regarded as a mapping from states 
to real numbers (Mackey, 1963 ; Arnold, 1978; Rosen, 1978), we state 

Postulate 4. Observables of enzymic catalysis correspond to projections 
of  the complex number (F, o~) to the reals. 

Thus different observables produce different 'meter-readings' of  the same 
enzyme-substrate process (F, o~) (Fig. 2). Note, however, that if the 
enzyme-substrate pair has no interaction, i.e. if (F, o~) = 0, then all obser- 
vables give the value 0, and in this case we can say that the enzyme ot does 
not interact with F. 

P~ < F , , : , > / /  , 

Figure 2. 
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8. Biochemical Implications. Many mathematical results from the theory 
of  Stieltjes integrals have pleasing biochemical analogues. In this section we 
discuss several o f  these correspondences in our modelling relation. 

First, let us consider the fibrous (structural) proteins, for example the 
keratins and collagens. These abundant proteins do not have enzymic activi- 
ties. Their polypeptide chains are arranged or coiled along a single dimen- 
sion, of ten in parallel bundles; i.e. their backbones are regular helices. The 

= ~ + ir representation of  a helix, significantly, is a constant (Louie and 
Somorjai, 1982, 1983). And when ot is a constant, 

(F,a) = . f F d a  = 0 (21) 
I 

for all F E C(I)  (in fact for all complex-valued functions F on / ) .  Thus these 
fibrous proteins are enzymically inert. 

Next, consider this mathematical result: if 4~ E C(I)  and a E N B V ( I ) ,  
then the function % defined by 

ao(s) = s q~ do~, (22) 

for s E I = [a, b], is also a normalized function of  bounded variation on L 
This leads to the concept of  'modified enzymes'.  Given an enzyme a E 
N B V ( I )  and a 'modifier '  4~ E C(I),  their interaction results in the modified 
enzyme % E N B V ( I ) ,  which can in turn operate on other substrates F E 
C(I):  

(F,o/q~) = fFdo/q~ = f F ~ d ~ .  (23)  
i i 

Clearly (F, %) is not necessarily equal to (F, a), hence 4) does 'modify '  the 
enzyme a. In particular, when I(F,%)I is large compared to I(F,a)l ,  i.e. 
when r increases the activity of  a, the above is a model of  enzyme co- 
factors. Consider a as an apoenzyme. The modifier ~b is the co factor (metal 
ion, coenzyme, or vitamin). The activated form % is the corresponding 
holoenzyme.  If, on the other hand, [(F,ar is smaller than I(F, a) l, then 
acts as an inhibitor of  the enzyme ~, and the mathematical theory models 
enzyme inhibition. Thus depending on the relative values of  ( F , a  s) and 
(F, a}, various types of  modification, regulation, and modulation of  enzyme 
activity can be modelled. 

The indefinite Stieltjes integral (22) can also be used to locate the active 
sites of  enzymes. Since interaction of  the substrate F and the active site of  
the enzyme a leads to a slight distortion of  the local geometry, a comparison 
of  the two functions a F and a reveals the location of  the active site: candidates 
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are neighbourhoods of  those values of  s for which o~-(s) and o~(s) are signi- 
ficantly different. An example can be constructed from the results in the 
Drenth et al. (1976) study of  the binding of  chloromethylketone substrate 
analogues to crystalline papain. Different chloromethylketones were reacted 
with the proteolytic enzyme papain (EC 3.4.22.2), and it was found that 
the conformations of  residues cysteine-25 and histidine-159 in the derivative 
structures (enzyme-substrate complexes) were not the same as those in the 
native enzyme. These different conformations result in different curvature 
and torsion values of  the corresponding backbone space curves. In other 
words, for papain ~ and a chloromethylketone substrate analogue F, 

lOaF(S) -- O~(S) I > 0 (24) 

in neighbourhoods of  s = 25 and s = 159. (The domain interval I can be 
scaled appropriately so that s E I represents 'residue number' .  For papain, 
let I = [ 1 ,212] . )  Furthermore, the operator norm between ~-  and or, 

IIc~F-- ~llv = V(O~F-- ~), (25) 

can be used as a measure of  the deviation between the enzyme-substrate 
complex and the native enzyme. 

The theory of  active-site location can also be formulated as follows. For 
the substrate F let 

Fs(.)  = F(s  -- .), (26) 

i.e. Fs is a lateral translation of  F over the real domain. Then for each s E I 
we can evaluate the Stieltjes convolution 

(Fs, c0 = f F  s dt~. (27) 

1 

The value of  s E I which gives sup I(F s, c~)l will then correspond to the 
optimal location of  the substrate F relative to the enzyme o~. 

The operator norm II. IIv, used in equation (25) to measure the variation 
between an enzyme and its substrate-bound complex, can be used to model 
discrimination. Given an enzyme t~, let F and G be two substrates. Then 

I(F,a) -- (G,o~)l~< IIo~llv liE-- G L ;  (28) 

i.e. IIo~llv is the 'scaling factor'  between the distance (difference) of  the two 
substrates and the difference (distance) in the degree of  recognition of  these 
two substrates. Since the value of  IIo~ll V dictates the relative sizes of  IIF-- G I1~ 
and I(F, o0 -- (G, o0l, it is an indicator of  the discriminating power of  the 
enzyme. 

Thus the two correlating biological concepts of  recognition and discrimina- 
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tion are modelled by the interdependent  mathematical concepts of  norm and 
metric on Banach spaces. First, for a substrate F to be recognized by an 
enzyme a, i.e. for the ' input'  to be identified or associated with one o f  a set 
of  possible alternatives, the Stieltjes integral (F,a) must exist. In other 
words, integrability is a prerequisite for recognizability. The degree of  
recognition as an observable is the actual value of  the integral (F, c~), or the 
norm [(F, or)1. Discrimination (the detection of  variations, or differences, 
in recognizability between substrates F and G) is the distance, or the metric 

d((F,  ot), (G,~)) = I ( F , a ) -  (G,a)[,  (29) 

which gives the associated real-valued observable. Thus the norm and the 
metric, hence recognition and discrimination, are related by (29). 

Naturally, the operator norm II" IIw can also be used as a metric in compar- 
ing the functional similarity between different enzymes. For two enzymes 
a and/3, their 'distance' is 

d(a,/3) = II a --/3 IIv = V(~- /3 ) .  (30) 

(Note that since o~ and/3 may have different domains In and I~ C / ,  a scaling 
or translation between In and I~ may be necessary.) Functional similarity 
can also be examined by comparing U ~ F -  a ilv with 11/3F--/3 IIv for arbitrary 
substrates F. These and other metrics of  enzymes, and of  proteins in general, 
provide valuable insights into the structure and function of  proteins, which 
we shall discuss in a subsequent paper. 

9. Convergence of Enzymes. In Louie and Somorjai (1983) we show that 
a pair of  continuous functions can be approximated by stepped-mappings, 
functions which are sectionally constant. Thus every space curve, in parti- 
cular every protein backbone, can be arbitrarily closely approximated by 
stepped-helices, since a sectionally constant (~, T) E S(I) corresponds to a 
linked sequence o f  helices. (S(I) is the space of  stepped-mappings on I.) 
This approximation is with respect to the supremum (L ~*-) norm on 
S(I)- D C(I). In particular, for every enzyme a there exists a sequence of  
stepped-helices, or 'approximating enzymes',  {o~, }, such that as n -+ oo 

II o~,, - a l L .  -+ 0. (31) 

This L ~ (i.e. uniform) convergence of  (an} to a is a 'structural'  conver- 
gence, since it is a convergence of  curvature and torsion (which describe the 
shapes of  protein backbones). The mathematical hierarchy of  convergence 
dictates that uniform convergence implies strong convergence 

Ila, -- ally ~ 0, (32) 

which in turn implies weak convergence 
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(F, o~ n) -~ (F, c~) (33) 

for every (substrate) F ~ C(I). Hence structural convergence in fact implies 
'functional'  convergence, a striking and illuminating mathematical analogue 
of  the fundamental dogma of  molecular biology, that 'structure implies 
function'. 

The converse of  the dogma, a derivative of Rashevsky's (1960) relational 
biology, that 'function dictates structure', also has a mathematical analogue 
(although with a slightly stronger assumption and a slightly weaker conclu- 
sion). If (otn } converges to ot weakly (in C(I)*, statement (33)), and if 

Ilan Uv ~ IIotllv, (34) 

then {~n} converges to a strongly (in NBV(I) ,  statement (32)), which then 
implies pointwise convergence 

otn (s ) -+ o~(s ) (35) 

for every s C L This has the biological interpretation that functionally similar 
enzymes with close overall shapes (total variations II. IIv) must be structurally 
similar as well. 

10. Stepped-helical Enzymes. Since a stepped-mapping, i.e. stepped-helix, 
o~ E S(I), has bounded variation, it acts as an enzyme when interacting with 
a substrate F E C(I) and produces the complex (F,c~) = fFd~.  We may 

i 
assume without loss of  generality that a is left-continuous, since changing 
the value of  ot at finitely many points (other than the end points) of  I 
will not affect the value of  (F, or). 

Thus a stepped-helical (approximating) enzyme a has the form 

Cl, s o ~<s ~s~  

c~(s) = k (36) 
~'cj ,  s k _ l K s < ~ s k ; k = 2 , 3 , . . . , n  

j = l  

where {a = S o < S 1 < .  �9 �9 < s n  = b} is a partition o f / =  [a, b]. ( I f a E N B V ( I )  
then of course cl = 0.) Note that c i is the difference in the value of  or on the 
subintervals (sj, sj+l] and (sj-1, st], i.e. the 'jump' at s = s t. With such a 
stepped-mapping o~ as integrator, the Stieltjes integral can be written as the 
finite series 

tl 

(F,r = f F d ~ =  ~ F(sk)ck. (37) 
�9 k = l  
I 

Thus among all the functional values of  F, only those at the partition points 
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are used. In other  words, the enzyme a identifies the attachment sites on 
the substrate F. Along these lines it is also possible to construct an inhibitor 
~b for the enzyme a: define q~(sk), k = 1, 2 . . . .  , n, such that 

/'l 

O(Sk)Ck = o (38) 
k = l  

(and let q~ be continuous on neighbourhoods of  sk); then 

= f da = 0, (39) 
, J  

I 

hence inhibition. Furthermore,  ( F , a )  may not exist if F is not continuous 
on neighbourhoods of  the partition points sk (allowing 'generalized' sub- 
strates F E C(I)): an example in which the existence of  the Stieltjes integral 
can be used to reflect the recognizability of  the (potential) substrate F by 
the enzyme a. 

The cardinality and density o f  the partition set {a = So < s 1 < .  �9 �9 < sn = b} 
reveal the size and complexity of  the enzyme a, which are related to its 
selectivity, or resolution power. This is because the larger and denser the 
number  of  partition points, the more difficult for d(aF, a a )  to be small, for 
the latter requires 

F(sk)ck-- ~ G(sg)ck (40) 
k = l  

to be small for m = 1, 2 , . . . ,  n. This cardinality-density argument provides 
a feasible explanation of  the usual conception that the large size of  an en- 
zyme is required for its function, in particular for its specificity. 

11. Integration by Parts. The assumptions on the integrand and the inte- 
grator are reversible. If  F is o f  bounded variation and a is continuous on I, 
then the Stieltjes integral of  F with respect to a also exists, and 

f F d a  = F(b)a(b) -- F(a)a(a) -- f dF, 
I I 

i.e. 

Equations (41) and 
Stieltjes integral. 

In Section 

(41) 

h 
(F, cO + (o~, F)  = F a  ~. (42) 

(42) are formulae for integration by parts for the 

10 we saw that a Stieltjes integral becomes a series if the 
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integrator is chosen as a stepped-mapping and the integrand is chosen to be 
continuous at the partition points. The same result can be achieved for a 
continuous integrator and a stepped integrand, using integration by parts. 
Indeed, if {a = So < Sl �9 . �9 < sn = b} is a partition o f I =  [a, b], i f a i s  con- 
tinuous at these partition points, and if 

F(s)  = 

u l ,  s o ~<s ~<s a 

k 
E Uj, 

/=1  

Sk_ 1 < S  ~Sk; k = 2, 3 . . . . .  n 
(43) 

then 

n 

(F, o~) = fFd  = uk [o~(b) -- o~(sk)]. (44) 
k = l  I 

Thus among all the functional values of  a, only those at the partition points 
are used. In other words, the substrate F identifies the active site(s) on the 
enzyme ~x. Thus, it is also possible to construct an enzyme o~, by defining 
its values continuously at ot(sk), to give a prescribed (F, a) complex. In parti- 
cular, these ideas lead to the theoretical possibility of  synthesizing artificial 
enzymes  which perform specified tasks. 

Furthermore, when F is a urrit-step function defined by 

F ( s ) =  I O' s <~s~ 

1, s > s l  
(45) 

the Stieltjes integral (F, a) has the value [ a ( b ) -  a(sl)] (if a is continuous at 
sl). Thus one can obtain the functional values of  the enzyme ot at different 
sl positions via the Stieltjes integral. This gives a method of  'reconstruction' 
of  an 'unknown'  enzyme. The method is related to the classical 'moment 
problem' (where F(s)  = s k for k = 0, 1, 2, . . . ), which is discussed in 
Akhiezer (1965). As a practical application, from a sequence of  observed 
values /~a, /a2, �9 �9 �9 due to interactions between a sequence of  substrates 
Fa, F2 . . . .  and an 'unknown'  enzyme, one can solve the equations 

(Fk, od = gk (46) 

k = 1, 2 . . . . .  to obtain the functional representation o~ of  the enzyme. 

12. Enzyme-Subs tra te  Duality. The integration by parts formulae (41) and 
(42) for Stieltjes integrals hold, in fact, without assuming anything about the 
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nature of  the functions F and a except the existence of  one of the two 
integrals. These formulae reflect a certain ' symmetry '  inherent in enzyme-  
substrate interactive s y s t e m s - - w e  may regard both enzyme and substrate 
as meters, each observing the other. Note, however, that ( F , a ) a n d  (a,F) 
differ in sign, as well as by the constant Falab; the integration by parts 
formulae therefore do not  give the most appropriate description of  this 
enzyme-substrate symmetry.  Rather, they point to an inherent dissymetry 
between enzymes and substrates. 

A more natural description of  this duality that exists between enzymes 
(elements of  C(I)*)  and substrates (elements of C(I)) can be derived from 
the concept of  second dual space. The use of  the notat ion (F, ~) in place of  
~(F) ,  as we have done, is convenient to denote this enzyme-substrate 
duality: the action of  a on F on the one hand and the action o f  F on a on 
the other. 

Let us first discuss some general concepts. For a normed space X, the dual 
space X*, the space of  all bounded linear functionals on X, has as its norm 
the operator norm defined by 

Ilx*ll = sup{l(x, x*) l :  [Ixll~< 1} (47) 

for every x* E X* (re. equation (12)). The operator norm turns X* into a 
Banach space. Dually, for every x E X, the norm of  x admits the alternate 
description 

II x II = sup{ I(x, x*)l :  II x* II ~< 1 } (48) 

Consequently, 

x* ~ (x, x*) (49) 

is a bounded linear functional on X*, o f  norm Ilx II. 
The normed dual X* of  a Banach space X, therefore, is itself a Banach 

space and hence has a normed dual of  its own, denoted by X**,  called the 
second dual space of  X. Statement (48) above shows that every x E X 
defines a unique ~x E X** by the equation 

for every x* E X*, and that 

(x, x*) = (x*, Cx) (50) 

IIq~x II = IIx II (51) 

for every x E X. It follows from (50) that r  -* X** is linear, and from 
(51) that ~b is an isometry. Furthermore,  q~(X) is closed in X**.  Thus q~ is 
an isometric isomorphism of  X onto a closed subspace of  X**.  Frequently,  
X is identified with q~(X) and hence X is regarded as a subspace of  X**.  

If ~b(X) = X**,  then the space X is called reflexive (for example, all 
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LP-spaces with 1 < p < ~o are reflexive). It may also happen that r is 
a proper subspace of  X**;  the space with which we are concerned, namely 
X = C(I), is an example. 

Thus an enzyme a E NBV(I)  = C(I)* acts as an operator on a substrate 
F E C(I), while dually the substrate F E C(I) C NBV(I)*  = C(1)** acts as 
an operator on the enzyme a. So the bilinear functional (7) admits the dual 
description 

' ,  , )"  
(F, 60 E C(I) • C(I)* 

(a, q~F) E NBV(I)  • NBV(I)*  

= C(I)* X C(I)** 

f Fda. (52) 
I 

Since C(I) is not reflexive, 'substrates', i.e. elements of  C(I), do not provide 
all the operators on 'enzymes', i.e. elements of  NB V(I). This suggests the exis- 
tence of  a special class of  enzyme regulators (in C(I)** "~ C(I)). In particular, 
this class includes the proteolytic enzymes (i.e. the proteases and peptidases). 

13. Enzymic Catalysis. Many one-substrate reactions of  enzymes involve 
several complexes, thus the mechanism of  enzyme-substrate interaction can 
be represented as 

e + S ~ e S . ~ e l Z I ~ e 2 Z 2 . - . . . . - - e P ~ P + e  (53) 

where eS is the enzyme-substrate complex, ekZk the sequence of  inter- 
mediate complexes, and e'P the enzyme-product  complex. P is the product 
of  the interaction between the enzyme e and substrate S, and e' is the 'modi- 
fied enzyme', with an induced morpholoty,  from which the enzyme e can 
be recovered (by definition an enzyme is a catalyst). In particular, therefore, 
d(e, e') must be relatively small. 

The kinetic evolution from eS, through the intermediate complexes, to 
e'P can be formulated mathematically via the concept ofadioint. Let X and 
Y be Banach spaces. For a bounded linear transformation T : X ~ Y ,  its 
adjoint T* " Y*-+X* is defined by 

T*(y*) = y*o  T E X*  (54) 

for everyy*  ~ Y*. Then f o r x  E X  a n d y *  E Y* 

(x, T*(y*)) = (Tx, y*). (55) 

If y*,  z* E Y* and Ily* - z* II < e for e > 0, then for x E X, 

[(Tx, y* ) - - (Tx ,  z*) [=  [(Tx, y* - -z*) l  = I(x, T*(y* -- z*))[ 

<~ IIxIIIIT*IIIIy*-z*[[< IIxIIIIT*I[e. (56) 
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It is this continui ty property that is useful in the modelling o f  the evolution 
of  complexes. 

Let X = Y = C(I) be collections o f  substrates, intermediates, and pro- 
ducts. Then T: C(I)  -~ C(I), i.e. T E L(C(I)) ,  maps a substrate F to a 
potential product  TF. The adjoint T*: NBV(I )  -* NBV(I )  maps an induced 
enzyme tx', which couples with TF, to the original enzyme a. Thus given 
a prescribed upper allowable limit e > 0 o f  variation on the enzyme, an 
enzyme a and a substrate F, for each substrate-to-(intermediate) product 
transformation T, one obtains the set of  complexes 

{(TF, a'>: IIog- ally< e}. (57) 

The selection criterion for the intermeidate (product)  can be formulated as 

sup{ I<TF, a'>l: T E L (C(I)) ,  l[ a '  -- a I[v < e}. (58) 

These suprema can be taken sequentially, which models the sequential 
nature of  the evolution of  complexes from eS to e'P. 

This mathematical model of  enzymic catalysis, an evolution of  enzyme-  
[substrate, intermediate, product] complexes, is depicted in Fig. 3. 

C(1): 

I n t e r a c t i o n s :  

NBV ( I ) :  

I n te rmed ia tes  

S ~ substrates Zj Z 2 

F ,, F I - F 2 - -  . 

[ 
< F,(1 > < F j , ( 1 ) >  <F2, t~2  > 

I I 
(1 ~ (11 9 ( i  2 ~ 

e ~ enzymes  

Figure 3. 

P ~ products  

J G 

I 
< G , a '  > 

I 

_I 

The same model, with trivial modifications, can also be used to describe 
mult ienzyme-mult isubstrate chain reactions. Louie et al. (1982) present a 
phenomenologicat calculus for enzyme-substrate interactive processes. They 
provide an alternate description of  enzymic catalysis using the concept of  
response tensor. The reader is referred to their paper for details. Other 
phenomenological connections of  the present Stieltjes integration model 
will be discussed in a forthcoming paper. 
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14. Generalization and Prospects. The proposed theory of  enzyme-substrate 
interactions is based on a combination of mathematical concepts from dif- 
ferential geometry and functional analysis. We saw how the simplest ideas 
from these topics in mathematics produce a model of  the enzyme-substrate 
interactive process which captures many of  the biochemical features of  
enzymic catalysis. In this final section we discuss further mathematical 
analogues of  other aspects of  the biology of  enzymes. 

In Louie and Somorjai (1982) we presented a dual description of  proteins 
on two differential-geometric hierarchical levels: space curves and surfaces. 
The characterization of  space curves by curvature and torsion leads to the 
present formulation of  the Stieltjes integrator a = h: + it: I C ]R~ ~ .  We can 
similarly use the characterization of  surfaces by the two corresponding 
invariants, the first and second fundamental forms I and II, and represent 
an enzyme by the function A = I + iII, which has the two-real-dimensional 
tangent bundle of  the surface as domain, and a two-complex-(= four-real-) 
dimensional space as range. The enzyme-substrate interaction is then 
described by the Stieltjes integral 

f FdA (59) 
U 

over a region U C IR :. (The substrate F would still be a function of  two real 
variables, say a regular parametrized surface embedded in l l  a, representing 
the 'shape' of  the substrate. Recall Section 6.) 

Other functional-analytic concepts which have biological interpretations 
in enzymic catalysis include: 

(a) annihilators (elements in dual spaces which vanish on elements in base 
spaces, and vice versa), which give mathematical analogues of  inhibitors, 
metabolic poisons, etc. ; 

(b) bounded operators, which can be used to describe transformations of  
enzymes and substrates; 

(c) adjoints, generalizations of dualities, which further characterize the 
symmetry and dissymmetry of  enzymes and substrates; and 

(d) metrics, which give alternative descriptions of  the 'distances' between 
molecules via the various L p, operator, etc., definitions, and which can be 
used to assess the similarity of  biological molecules. 

15. Review: Correspondence between Mathematics and Biology. Let us 
close by tabulating the correspondence of  the biological and mathematical 
concepts presented in this paper. 
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Biology Mathematics 

Protein 

Substrate 

Enzyme 

Enzyme-substrate  interaction 

Observable of  enzymic catalysis 

Structural (fibrous) proteins 

Co factor; mo differ; inhibitor 
Apoenzyme 
Hotoenzyme; modified/ inhibi ted enzyme 

Induced variation on enzymes; 
Similarity between enzymes 

Lateral t ranslat ion/movement of  substrate 
on enzyme 

Recognizability 
Recognition 
Discrimination 

Structural similarity 

Functional  similarity 
Structure implies function 
Funct ion dictates structure 

Approximating enzymes 

Enzyme-substrate  dissymmetry 
Enzyme-substrate  symmetry 

Qualitative analysis of unknown enzyme 

Mechanism of  enzymic catalysis 

Space curve; 
Pair of functions (g, r) ;  
Complex-valued function of a real variable, 
sectionally continuous and of bounded 
variation, a = ~ + ir 

Complex-valued continuous function of a 
real variable, F E C(I) 

Complex-valued normalized function of 
bounded variation, a E NB V(I); 
Bounded linear functionals on C(I), 
a E C(I)* 

Stieltjes integral (F, a)  = f F d~ 
I 

Projections of  (F, ~x) to the reals 

Constant a ;  ~ --- 0 

~ c( i )  
c~ E NB V(I)  
~ ( s )  = J~ r da. 

Total variation metric II. II V 

Stieltjes convolution 

(Fs, a) = f F(s - - ' )  da 
I 

Stieltjes integrability 
value of (F, a)  
I(F, a ) - -  (G, a)l  

Uniform convergence; Pointwise conver- 
gence 
Weak convergence 
Uniform convergence ~ weak convergence 
Weak + norm convergence ~ pointwise 
convergence 

Stepped-helices 

Integration by parts 
Duality of Banach spaces 

Moment problem 

Transformations and their adjoints 
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