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We present a mathematical examination of the measurement and representation of 
membrane transport systems. Confronted with a coupled, multicomponent system, 
the experimentalist must choose meters which project out and make measurements 
upon subsystems in a rational manner. With a proper choice of projection operations, 
a representation of the composite system can be synthesized directly from the results 
of measurement. Starting from a set of basic axioms governing the measurement 
process, we apply the tenets of operator theory to the action of meters. We derive 
the projection operators associated with the representation of transport systems in 
terms of irreversible thermodynamics. The metric structure of this representation is 
explored from the viewpoint of measurement and the specification of identity. By 
means ofconcrete examples and a computational algorithm, the abstract, mathemati- 
cal formalism is related to standard laboratory procedures. 

1. Introduction 

What  does the biophysicist know about  the t ransport  of  molecules across biological 
membranes? How is this knowledge obtained? How is this knowledge expressed, that 
is, represented symbolically? Ultimately, everything that the biophysicist knows 
about  membrane  transport  processes is derived from the observation of meters in 
the laboratory.  The data itself can be presented by tabulation or in graphical form. 
The data can also be used to determine some ad hoc mathematical  function that 
"fits" the data. Thus, the set of  meter readings is " reduced"  to a smaller parameter  
set characteristic of  the prescribed function. A third possibility is to reduce the data 
to a set of  parameters  pertaining to a mathematical  model of  permeation based 
upon underlying physical mechanisms. With a successful reduction to such a set o f  
constitutive parameters,  the biophysicist has some confidence that the associated 
t ransport  equations represent the biological phenomena in an objective manner,  
independent of  the measuring process. However,  there is no a priori logical prohibi- 
tion upon the possibility that the meter  itself necessarily induces the form of  the 
representation, thus making meter  and representation inextricably linked. 

This paper  presents a mathematical  examination of the measurement  and represen- 
tation of  membrane  t ransport  systems. The first part  is epistemological, with the 
development of  a general, abstract theory. Though axiomatic, the theory is motivated 
by reflecting upon the task of  the experimentalist,  who, confronted with a complex, 
highly interacting biological system, must draw upon experience and intuition to 
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devise a method to divide it into subsystems in a meaningful way. A commonplace 
representation resulting from such an isolation of and measurement upon component 
subsystems is the wall chart so often posted in biochemistry laboratories which 
depicts, in an integrated manner, the various subprocesses involved in the metabolism 
of glucose. The membrane biophysicist typically employs subsystems identified by 
the mobile molecular (possibly ionized) species: for example, sodium flux or water 
flux. These may not, however, be easy to measure in a direct manner, and the 
experimentalist may elect to work with subsystems identified by physical properties: 
for example, electric current or volume flux. 

Certainly, any theory of measurement must address the problem of the reduction 
to (or, equivalently, the identification of) subsystems. In fact, we shall see that 
identification is central. In our theory, though it is concerned with the macroscopic, 
deterministic systems that one encounters in biology, the resolution into subsystems 
is analogous to the spectral decomposition of a quantum system into eigenstates. 
Just as quantum subsystems are identified by the specification of their associated 
eigenvalues (quantum numbers), the subsystems projected out of their biological 
context by the measurement process have identifying eigenvatues. A linear operator 
is ascribed to a given measurement process, and this operator determines the eigen- 
values. The eigenstates comprise the set of appearances associated with the reduction 
to subsystems, and with them a representation of the composite system can be 
synthesized. It is, in fact, the best possible representation. At this point, the reader 
must be cautioned not to make too much of our appropriation of the mathematical 
forms and terminology of quantum mechanics. We use the forms but not the physics. 
We impose no quantum conditions, explicitly or implicitly. 

The second part of this paper is practical. Our abstract theory of measurement 
has a concrete realization in the familiar transport equations of irreversible thermo- 
dynamics. However, the approach to these transport equations via an examination 
of the measurement process is unfamiliar. A membrane system in the context of a 
particular experimental situation can be represented by a single mathematical entity 
which we have called the response tensor. The response tensor varies as the external 
constraints on the membrane system are changed. The descriptions of all possible 
experiments on the system are thus contained in the space spanned by the response 
tensor. This space is a metric space, and the complete linear formalism of irreversible 
thermodynamics is provided by the geometric structure associated with the response 
tensor. The response tensor is composed of the eigenstates arising from actions of 
the operators used by the experimentalist to divide the system into the desired sub- 
systems. As such, it is the optimal possible representation. We present a data reduc- 
tion algorithm to calculate the constitutive parameters which characterize the 
membrane and determine the operators of the measurement process. Thus, the 
parameters of our unfamiliar theory can be determined from the familiar results of 
experiments by the membrane biophysicist. 

The awesome success of 20th century physics has amply demonstrated what can be 
achieved by studying directly the mathematical structure underlying a phenomenon, 
rather than constructing in detail a mechanistic model. This paper is part of a 
continuing series devoted to a tensor algebra which has proved to be particularly 
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well suited for the study of complex systems. Although the paper is essentially self- 
contained, we shall draw upon notation and results from earlier papers, especially 
Richardson et al. (1982) and Richardson & Louie (1983). 

2. The Measurement Process 

Quantum mechanics, of all the sciences, possesses the most highly developed theory 
of measurement. Reduced to essentials, it posits that, by definition, observables are 
operators and that the result of a measurement is an eigenvalue of an observable. 
Furthermore, a representation of the state of the system can be given as a linear 
combination of the associated eigenvectors (eigenstates). Finally, a measurement 
repreated gives the same result as it did initially. 

Operators, and hence observables, operate upon vectors, and in this case the vector 
describes the state of the system confronting the experimentalist. In principle and in 
practice the experimentalist cannot hope to obtain a "complete" description of the 
"whole" system that includes all possible modes of interaction with all other systems 
in its physical context. Experimentation proceeds by projecting out a series of sub- 
systems, and any representation of the system is restricted to information gained by 
measurement on these subsystems. In Richardson & Louie (1983) we address the 
problem of how to synthesize a mathematical representation in an optimal manner 
directly from the results of measurements upon projected subsystems. We start with 
two basic postulates from that paper. 

Postulate I 
Nature is a Hilbert space N over the real field, and it consists o f  invariants I, which 

are not directly accessible. 
This is not as shocking as it might seem. At the very core of every scientific theory 

is the establishment of a direct correspondence between natural phenomena and 
mathematical objects. This remarkable abstraction is made even more audacious by 
the dictum that the correspondence is a full functor (in the terminology of category 
theory). Thus, any strficture inherently associated with the mathematical objects 
must be manifested in the natural world. This, in fact, is the power and the test of 
any theory that purports to be more than mere curve-fitting. It is only reasonable to 
assume that the mathematical representation of natural phenomena as revealed to 
us by the mediation of meters must be done in a metric space. The distinction between 
real and complex fields corresponds to the distinction between the representation of 
deterministic, macroscopic phenomena, as addressed here, and the representation of 
probabilistic, quantum phenomena (see Richardson & Louie, 1986). 

Postulate I I  
Real manifestations (i.e. phenomena or appearances) are projections o f  I: i.e. 

Aa = ~,,I, ( ] )  
^ 

where A~ = appearance ct and ~3, =projector producing appearance a. 
In mathematical terms, a projector is a linear operator such that ~3 ] = ~ .  In our 

earlier papers we made no distinction between the words appearance and observable, 
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although we did anticipate one and used the symbol Aa as a mnemonic notation. In 
the context of  a theory of measurement, ~3a is an observable. By its projector prop- 
erty, it operates on (1) to give 

~A~ = ~I = ~al =A~. (2) 

Therefore, the appearance A,, is an eigenvector (eigenstate) of  the observable ~ 
associated with the eigenvatue (quantum number) ,a.= = 1. 

To get an intuitive notion of  what this abstract formulation of  a measurement 
means in the "real"  world of  experimentation, consider the use of  flame-photometry 
to determine if, say, a sample of  extracellular fluid contains sodium. The result of  
the measurement is binary : yes or no. Sodium, per se, is not measured. One uses an 
eyepiece or a photographic emulsion to determine whether or not there is a beam of  
light leaving the prism at a given angle ,9 (a rather old-fashioned spectrometer is 
assumed). The angle ,9 is determined by the wavelength of  the sodium D-line and 
the index of refraction of the glass of the prism. The observable is the operation of  
projecting (via the prism) a beam of  light to a detector at the angle ,9. The light 
emanating from the sample in the flame is sent to the eigenstate [0). If the projected 
beam 1,9 ) is sent through a second spectrometer, the same result is found: namely a 
light band at #. In the parlance of  quantum mechanics this is called wave-packet 
reduction. 

It was posited that the result of a measurement was the eigenvalue associated with 
the observable. If sodium is in the sample, the result of the experiment is yes, which 
corresponds to the eigenvalue 2.,~ = 1. Since there is a one-to-one correspondence 
between the eigenstate J0) and the eigenvalue A.,~ = I, the presence of sodium in the 
sample can be denoted [Na) =~1,9) 211 ). The absence of  sodium gives the null result 
[no N a ) ~ 1 0 ) .  Identity is thereby bestowed upon a system (i.e. a sample) by this 
particular observable. A system (or, to be more precise, the representation of its 
state) either "contains" the eigenstate or not. Its identity is either I l )  or 10). Thus, 
its name is its eigenvalue (quantum number). If the experimentalist goes to the 
cabinet of reagents, takes a pinch of  substance from a bottle labeled "sodium",  and 
puts it into the flame, then he can make an empirical correlation between names: 
I s o d i u m ) ~ l O ) ~ [ 1 ) .  However, as we shall see, science is deeper than mere 
convention. 

3. Spectral Decomposition and Subsystems 
^ 

The observable ~l~u projects out a subsystem. The subsystem is the eigenstate Aa 
(i.e. the appearance) and is identified by the related eigenvalue. I f a  set of  observables 
{~i: i=  1 . . . . .  m} is carefully chosen so that they are orthogonal;  that is, 

^ ^ 

~,q-13j = 0 for i g:j (3) 
^ . )  ^ 

or, since 97 = '13i, 

~, .~j= a ~ , ,  (4) 
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then this decomposition into subsystems provides a remarkably simple way to make 
a mathematical representation of the whole system using the eigenstates. The repre- 
sentation is 

R = Z A~, (5) 

and not only is it simple, but it is also the best one possible in that Ill-RI] is 
minimal [see Richardson & Louie (1983) Postulate III for details]. Rosen's (1984) 
"orthogonal projection experiment" uses this optimality principle in a powerful 
empirical procedure for parameter estimation in very large systems. 

For this canonical set of observables, there is a set of eigenvalues associated with 
a given projector ~u ; that is, 

'b~A~ = ' b ~ ( ~ l  ) = ~ : l  = 'b~l = Au (6) 

gives an eigenvalue of 1, and 

~ A ~  = ~3~/~1 = £)1 = 0A~ (7) 

gives an eigenvalue of 0 for all/3 ~-a. This spectrum identifies the subsystem a, and 
thus the name of this subsystem is 

la)  = 10, 0 . . . . .  ] . . . . .  0) (8) 

with m entries and 1 at entry a. 

To see what this means in concrete terms, return to the example of sodium. There 
are many ways to identify sodium besides naming it by its spectral band location I~). 
Much of the science of chemistry derives from naming atoms in terms of  elementary 
constituents: electrons, protons, and neutrons. These comprise the  three subsystems 
of  all atoms and hence are associated with three observables" %., ~p, and ~,,. The 
spectra which identify the three subsystems are then 

e p n 

Al~[e)~ l l ,  0, 0) 

A2 ~ IP) ~ 10, 1, 0) (9) 

A3 ~ ] n ) ~  10, 0, l ) .  

Since sodium has 11 electrons, 11 protons, and 12 neutrons, its name in terms of the 
given subsystems is 

I N a ) ~  1 lie) + 1 l ip)  + 12[n) 

~111, 11, 12). (10) 

Here sodium is identified by its hierarchical structure rather than by convention. As 
we indicated in Richardson & Louie (1983: section 7), such a spectral decomposition 
is general. 

Consider an arbitrary linear operator ~, which is assumed to be self-adjoint. This 
condition has important physical significance because it ensures that the eigenvalues 
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are real: cf. Dirac (1958). Is .~ an observable? The question can be answered only 
operationally (in the empirical sense of the word), by considering what meters are 
available to measure the action upon the system by the physical process represented 
by ~ (in the mathematical realm, ~ acts upon the invariant I, which is characteristic 
of the state of the system). The experimentalist has at hand a set of  meters, compatible 
with the proposed observable, whose actions upon the system are determined mathe- 
matically by the basic projectors {~i: i = 1 , . . . ,  m} and whose unit readings corre- 
spond to the associated eigenvalues, 0 or 1. Therefore, the only empirically 
meaningful action of R is its restriction to the linear span of the basic projectors. All 
one can really "know" about ~ as an observable is given by the action of 

where D denotes the space of possible descriptions of the system that can be obtained 
via the available meters. Here and in the following we use the Einstein summation 
convention over repeated Latin indices, but no summation over repeated Greek 
indices. 

The expansion ( I I )  is valid and unique, it being essentially a statement of the 
Spectral Theorem. The decomposition ( I I ) is in fact called the spectral resolution of 
~,  giving a self-adjoint operator as a sum of projectors. The complete set of these 
projectors defines the class of compatible (but not necessarily available) meters. Thus, 
the self-adjoint assumption is seen to be crucial because it allows .~ to be decomposed 
according to subsystems defined by the actions of meters. Furthermore, as a sum of 
mutually orthogonal projectors, ~]3 is itself a projector and produces an appearance 
A = 9,31. Obviously, A is an eigenstate of ~.  The problem is to relate A to the various 
eigenstates, A~, associated with the meters. Since 

= 2 ~ A , ,  (12) 

it is seen that the ~.i in ( 11 ) are eigenvalues of  ~3. In addition, 

A=~I = 2 ,~ ,1  =,t. iA,.  (13) 

Therefore, the composite appearance A is a linear combination of  the basic appear- 
ances with coefficients provided b~ theeigenvalues of the operational (i.e. empirical) 
decomposition of the observable R~-)~. The name of the composite system in terms 
of subsystems is given by the spectrum of ~ ;  thus 

IA )  _= A,IA,) 
~ [3.1, 22 . . . .  , Z,,,), (14) 

where this spectrum is simply an ordered set of  meter readings. From this general 
argument, it is seen that the numbers in the name of sodium (10) are eigenvalues. 
Two levels of hierarchical description are related by the eigenvalues of the composite 
observable (proJector) connecting the different levels. The proper task for theoretical 
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science is to discover the connections between different descriptions (representations). 
The representation ],9) for sodium and that given by (10) are not hierarchically 
related, and their relationship is not as simple as the phenomenological connection 
(14). Given the atomic structure in (10), one can use quantum mechanics to calculate 
the emission frequencies. Given the frequency for the D-line and the index of  refrac- 
tion for the prism, one can then calculate the angle ~9. 

4. Constitutive Parameters and Projectors 

In measurement by flame photometry,  the name [0) is determined by a constitutive 
parameter of  the meter: the index of refraction of the prism. In this section the 
relationship between observables (projectors) and constitutive parameters will be 
examined. The appearances A,  are eigenvectors of  the projectors. In the search for 
the mathematical connections between descriptions, it is obvious that the appearances 
must be assigned some mathematical structure. In Richardson et al. (1982) we postu- 
late that the A,  are elements of  a subspace of the metric space Try(V) of dyadics 
over V, the vector space R" [in Louie et al. (1982) this is generalized to T I ( H )  over 
Hilbert spaces, H].  This subspace is the space spanned by the response tensor (dyadic) 

aiFi, R=ZA,= (15) 
i 

where Fi~ V are generalized forces and a'~ V* are constitutive parameters. The tensor 
R is a mapping V*~--~ V* defined by 

R(aY, - ) = aiFi(a j, • ) : (a i ' aJ)Fi 

= LJiFi 

= J J ,  (16) 

where, by the symmetry of  the dot product, L °= U i. By definition the J; are gen- 
eralized fluxes. At this point, the mathematical development is general, and we need 
not make any thermodynamic assumptions about the nature of  the forces and fluxes. 

The metric space spanned by R is called description space (D-space). In earlier 
work we have demonstrated that it provides a rich and powerful means for the 
representation of  natural systems. We cannot present a full development of  this 
phenomenological approach here, but shall indicate its most salient features in the 
following Duality-Invariance-Diagram (DID) : 

Fi 

aiFi 

a 

t r/ 
, j~  

= R = ajJ / 

aj 
U I 

(17) 
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The mapping a ~= L'Jaj is a consequence of  the invariance of FI (indicated in the center 
of the DID) in the two representations. 

A given D-space is determined by a fixed set of constitutive parameters  .r~l.t~j - The 
index i refers to subsystem i as determined by the observable ~ .  This index ranges 
t¥om i=  1 to m, where m is independent of the dimension n of  the underlying vector 
space V. Thus, m = dim D may be smaller, equal to, or larger than n = dim V. The 
identity (name) of subsystem ct is given by (8) as a spectrum. 

A lucid and instructive example of the relationship between spectra, observables, 
and constitutive parameters is provided by an incorporation of Dirac's ket and bra 
notation into the metric geometry implied by (17). One should be alert to notice that 
the usage here is significantly different in mathematical content, if not in form, from 
that of Dirac (1958): see also Friedman (1956). Here a~e V, and the associated ket 
belongs to the space of  linear operators from N to V; that is, Jar)eL(N, V). Likewise, 
a~e V* and (a~leL(N, V*). The usual response tensor (which belongs to the product 
space V® V*) becomes the hybrid response tensor 

R = F~(a'l = lai)J j. (18) 

The exact interpretation of this "hybr id"  is given in Appendix A. The actions of  the 
kets and bras upon R are [cf. Richardson & Louie (1983: (46) and (47))] 

R l a , , ) = F u  and ( a P I R = J  p (19)  

where the Dirac notation necessitates the distinction between right-hand and left- 
hand operators. 

What is the projector that sends R = [ to A,, and thereby operationally establishes 
the identity of  subsystem a? Consider the candidate projector 

,i& = la ><a"l (20) 

which operates (on the right-hand side) upon R as follows: 

'~ , (R)  = R'~u = ( Rlaa>)<aUl = Fu <a~'l = A~. (21) 

The dual projector [as regards D-space: cf. Richardson & Louie (1983: (15))] is 

~ P  = la~><a ~1. (22)  

which operates (on the left-hand side) upon Iq as follows: 

~, P( R ) = ~ ' R = lap )( (a  Pl R ) = ]ap)J  p = A p. (23)  

An important relationship between the bra and ket operators is established by 
combining (18) and (19): namely, 

Rlao> = F,<a~l a . >  = F,, (24)  

and 

(a  Pl Iq = (a p [aj>J j = J p (25) 
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In effect, this states that 

(ail a j )  = Lik(a/,.[ aj) = LikLkj = ~ .  (26) 

One should note that this "orthogonality". condition is on the linear operators and 
not upon the vectors a i and aj. In D-space the action of the L ~i operator  is that of  a 
metric tensor, and thus the number of  metrically related subsystems is not limited 
by n = dim V but rather is determined by m = dim D. However, (26) does not imply 
that the matrix U k has a unique inverse (see Appendix B). 

It is now possible to show that the candidate projector (20) does in fact satisfy the 
essential conditions (3) and (4); indeed, 

= l a ~ ) 6 ~ ( a P l  

a t ,  ^ = ~ ' ~ L .  (27) 

We are brought to a truly remarkable conclusion. The name of  a subsystem, deter- 
mined operationally by measurement, is the name of the measuring device. That  is, 
the observable is determined completely by constitutive parameters via (20). To see 
that this is not so far-fetched, consider the following simple laboratory procedure. 
Cells are suspended in a solution, homogenized sonically, and then filtered through 
a millipore filter with pores of diameter d. The only name that can be given to the 
filtrate is "the stuff that goes through a millipore filter with pores of diameter d" .  
This example can be extrapolated to a more sophisticated level by considering (17) 
to be the DID representing a transport system with F, and j i  denoting the forces and 
fluxes of  molecular (or ionic) species i. In this case the identity of  species i is deter- 
mined by the observable (20), which in turn is determined completely and solely by 
the constitutive parameter ai. Just as the diameter d determines the permeability 
properties of  a millipore filter, the set {a~} determines permeabilities via the pheno- 
menological coefficients L ~ -  (a~laJ). As a final example, recall that pH is measured 
using an ion-selective glass electrode. In Appendix C we address a crucial question: 
namely, can the a i be determined empirically? At first glance there appears to be a 
serious mathematical difficulty, which, however, is easily resolved. 

The prototype of  linear force-flux relationships is the phenomenological equation 
of Ohm: E =  RI. A plot of  E as a function of  ! for an incandescent lamp with a 
tungsten filament is essentially cubic. The behavior of  this simple device does not 
mean that Ohm's law must be abandoned. Rather, the non-linearity is ascribed to 
the resistance. Ohm's law is then seen to be locally linear and globally non-linear, 
with the resistance operationally well defined by the ratio R(I)  = E ( I ) / L  This obser- 
vation can be generalized to the more complex systems described by the DID (17) 
by allowing the constitutive parameters aj to be functions of  one or more of  the 
fluxes: that is, ai= at(J ) or, in the dual space, a ~= ai(F). It remains to be seen what 
advantages a description of  a complex biological system in terms of  a non-linear 
geometry might have over a head-on modeling of  detailed mechanisms and structures. 
Riemannian D-spaces have proved to be well suited for the analysis of  dissipative 
systems that age (Richardson & Louie, 1986). Lastly, the fact that in every instance 
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the response tensor is bilinear has significant implications for the Principle of Super- 
position in highly-interacting systems, with, for example, practical consequences for 
the interpretation of tracer fluxes (Richardson, 1989). 

5. Hierarchical Connections 

A set of projectors {~3i} (chosen at the discretion of the experimentalist) "quan- 
tizes" the system by a division into discrete subsystems. Because of the basic physical 
composition of natural systems, it is not unexpected that subsystems often are phys- 
ical particles (elementary or aggregated). In the case of transport across biological 
membranes, the division of fluxes and forces into subsystems is according to molecu- 
lar and ionic species: for example, i=  1 = jN~, i=  2 = jK, i=  3 = jc~, etc. In this case 
the DID (17) provides a representation of the system at a particulate level in the 
hierarchy of descriptions. Nevertheless, the division of a system into subsystems 
need not result in "quanta"  that are particles. In electrophysiology, for example, 
measurements are generally made of state variables such as electric current and 
pressure gradient which have no particulate character. Here the DID (17) provides 
a representation at the systemic level in the hierarchy of descriptions. 

A hierarchical analysis of dissipative systems is given in Richardson (1985), and 
that formulation will be used here (with slight notational changes) in an investigation 
of the connection between observables and names belonging to representations at 
different hierarchical levels. The flux of particle k is denoted jk and is related to the 
forces Fi ( i= 1 . . . . .  m) by the DID (17): j k =  Lk,F,. Each particle carries with itself 
certain properties, such as mass and volume. The flux of such properties, F i, is 
obviously just 

F /=  A~J k, (28) 

where the scale factors A~ are the partial molar quantities such as charge per mole 
of species k, Zk. The double index thus relates systemic properties such as charge to 
a given particle species. In this case F i would be current, with (28) being F ~= I =  
ZkJ k. Likewise, in the systemic description there are fields -~ related to forces by 

Fk = A ~ : ~ ' i  . (29) 

The fields commonly include V~/, VT, and Vp, where ~' = electrostatic potential, T= 
temperature, and p =  pressure [see Richardson (1985) for details, especially for the 
treatment of the concentration-dependent part of the Gibbs potential]. 

The hierarchical connections (28) and (29) between the particulate and systemic 
descriptions can be expressed by the following Adjoint-Invariance-Diagram (AID): 
see Louie & Richardson (1983) and Richardson & Louie (1983). The invariant 
connecting the two descriptions in (30) is the dissipation function 8 (which is given a 
geometric representation as the norm on the response tensor by the metric II R(p)II 2 = 
L°F~. Fj = J i .  F~-~  ). An explicit indication that the response tensor, R(p), refers to 
the particulate representation is required because the AID (30) does not itself estab- 
lish R as an invariant of the hierarchical connection (it is, as will be seen). There is 
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a~ 
~ F k ~,,i 

F i  , j k  

A'~ 

19 

(30) 

a DID (17) for the systemic representation with constitutive parameters b i and 
I IR( s ) l l 2=  g ° ~ j .  ~ i -  ~ with K O = b  i . b j. 

The connections between the two descriptions are derived directly from the neces- 
sary congruences between the two DIDs and the AID. For  example, from 

i i k r = A k J  = A ~ ( L k : F / )  = A'k LkJ(A~Z, , )  

Aik(a k j , - - h ~  (31) = . a ) A j ~ ,  h 

one finds 

since 

b i= AJka k (32) 

F i= K'h~,h = (h i . bh)~,h. (33) 

The response tensor in the systemic representation is then 

R ( S )  = bi~, i  = Aikak~i = akFk = F! (p), (34) 

and so, indeed, the response tensor is an invariant. From the corresponding invari- 
ance of  F! as represented in the dual of  D-space, it is easy to show that 

ai=Aikbk. (35) 

The final question to be addressed is: can one hope to find a spectral resolution 
such as (11) and (13) that connects the observables and appearances at the two levels 
of description? Actually, the situation here is not so simple, but, nevertheless, is quite 
interesting. 

The projectors are given as in (20) by 

~3~(p) = la~)(a~l (36) 

and 

ff3~(s) = Ib~)(b~l. 
Substituting (35) into (36) yields 

~3~(p) = mklbk)(aat ; 

(37) 

(38) 
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while (32) into (37) yields 

~ ( s )  = Ib~)(A~akl = A~lb~)(akl. 

That is, the spectral resolutions, analogous to (11), are 

Ak ~ct '~o(p) =~,~,~, 

and 

where 

(39) 

(40) 

~ . ( S ) =  .^k Ak(~. (41) 

~ = Ib~)(a' l ,  (42) 

which we shall call relative operators. Note that on the particulate level (40) the 
summation is over the upper index of the scale factors, while on the systemic level 
(41) the dual summation is over the lower index of  the scale factors. 

As for appearances, on the one hand 

~ u ( p )  R = A ,  = F,,(a~[ = A~-=, (a~l, (43) 

and on the other hand 

A ~ k  R. (44) 

Thus, defining relative appearances as 

we have, analogous to (13), 

A~ ~ k u A~,e, .  (46) 

Dually, on the systemic level we have 

~ ( s ) l R  B~ . k = =Ake~,.  (47) 

6. The Transformation of Names 

In (8) the name of subsystem a determined by the observable ~3, is given as an 
m-tuple of the m eigenvalues associated with ~$],, with 1 at the a th  entry and zeros 
elsewhere. There are 177 such spectra, or names. Mathematically (without regard to 
physical meaning) such a collection of  m-tuples forms the standard basis of  the 
vector space ~". The physical meaning of this vector space becomes apparent upon 
considering the name (14) of the spectral decomposition (12) and (13) of  an arbitrary 
appearance A in the D-space determined by the given observables {0k}, k = 1 . . . . .  m. 
For  a better notation, let the name [Ak)= 10 . . . . .  1 . . . . .  0)  (1 at the kth entry) be 
simply [k). Then (14) is 

IA )  = & l k ) ,  (48)  

which shows immediately how any name IA) can be expressed in terms of  the set of  
m basis vectors {Ik)}. Therefore, this vector space will be called name-space. 
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There is no direct connection between the name-spaces of  two different D-spaces 
which come about from dividing a given system into two different sets of  subsystems. 
Consider the preceding division of  a transport system into a particulate representa- 
tion and into a systemic representation. If there are m species of  particles, then there 
are m subsystems, and the dimension of  this name-space is m. If, on the other hand, 
there are r fields, then the dimension of  name-space in the systemic representation 
is r." Obviously, there is no one-to-one transformation between I~" and W for m ~ r. 
Nevertheless, there does exist a very interesting transformation of  names connecting 
these two levels in the hierarchy of  descriptions in a relative manner. 

Let Ik(p)) be the kth basis vector of the name-space in the particulate description. 
Consideration of  the relative spectral decomposition (46) leads to the following 
transformation: 

AI , ,  A', . . .  / 
I . . . . .  k . . . . .  m • . " 

'0 . . . . .  l . . . . .  0 ~ / A  I- " " "  A ~ . " " "  A k / ~ ' A / ,  
! 

\A],, " '"  A~,, ' ' '  A,~,,I/ 

. . , A ~  . . . . .  A~.). (49) 

The basis vector Ik(p)),  which is the name (spectrum) of  subsystem k, is transformed 
to a vector of dimension r. This gives the name of  Ik(p))  relative to the systemic 
representation; hence the transformed vector will be denoted Ik(p; s)).  With this 
notation (49) is 

Ik(p))[A2] = Ik(p; s)) ,  (50) 

where [A:,] is the r x m matrix of the scale factors. Since the lk(p))  are basis vectors, 
any arbitrary name ] A ( p ) ) =  ;.klk(p)) as given by (48) transforms linearly by (50). 
Analogous to (49) and (50), the basis vectors of  the name-space for the systemic 
representation transform via (47) as 

[A~](i(s)[ = (i(s; P)I- (51) 

The physical content of  (49) is easy to see upon considering an example from trans- 
port theory, with subsystem k(p)  as sodium (jk being the flux of  sodium). Here 
I k ( p ) ) = l N a ( p ) )  is the name of  sodium, which by (49) transforms to 
IA], . . . . .  A~ . . . . .  AY,) = I)ONa, f'Na, ZN . . . . .  ) ,  where M, V, Z are, respectively, par- 
tial molar mass, volume, and charge (Richardson, 1985). This Ik(p; s ) ) =  INa(p; s))  
is obviously a name for sodium. 

An important  conclusion to be drawn from our discussion of  measurements on 
complex systems is that there are no unique names. Names are bestowed opera- 
tionally by the actions of  the observables, ~,.. Any two objects having the same 
physical properties as regards the set of  observables used by the experimentalist will 
receive the same name. Since the "restriction to subspace" operation .ID is not 
injective, it is possible to have two operators R 4: ~ such that ~1D = 9Jll D. For  example, 
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if the observable is an operator that determines ionic charge, then Na ÷ and K ÷ have 
the same name: Imonovalent cation).  In the nomenclature of  Rosen (1978), they 
belong to the same "equivalence class". This work should be consulted for a theory 
of  measurement of natural systems which is mathematically and methodologically 
different from the one we have presented here. An analysis of  measurement in terms 
of category theory is presented in Louie (1985). Though differing significantly in 
approach, these and the present theory are conceptually convergent-- in spite of  
Rosen's ( 1978 : 26) summary dismissal of  the measurement theory of quantum mech- 
anics as being "in a chaotic state". As an introduction to measurement theory and 
epistemology the Tamer lectures of  Eddington (1939) remain unequaled. 

IWR dedicates this paper to the memory of his teacher Aharon Katchalsky, a master of 
irreversible thermodynamics and a pioneer in its application to biophysics. 
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APPENDIX A 

Adjoint Associativity 

The ket and bra operators introduced in section 4, being linear operators from a 
tensor product space to a vector space, have very interesting properties. We shall 
start with a general concept. Let U, V, and W be vector spaces; then the theorem of 
adjoint associativity states that 

L[U,L(V, W)]=L(U®V, W) (A.1) 
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[i.e. - ® V is the left adjoint of the horn functor L( V, - ) ] .  Another way of expressing 
this is that for every bilinear f :  Ux V ~  W there exists a unique f :  U® V---* W such 
that the diagram 

A 

U x V  > U ® V  

W 

(A.2) 

commutes [where ~. is the "generator map" (u, v) ~ uNv]. 
Now let aZe V*, and consider the bra operator (aPIeL(N, V*)=L(V@ V*, V*). 

Recall that its action on R = a"Fi is 

<aP[ Iq = R (a  ~, • ) = a 'F i (a~ ,  • ) = ( a ~  I a i>*F;  = L ~ F ~  = J ~. ( A . 3 )  

What is the bilinear map from V® V* to V* that corresponds to it? 
Each term a'F~ of the dyadic R is in fact the generator Oa~Q(I)- 'F~ (where 

(I) : V* --, Vis the isometric isomorphism; cf. Louie et aL, 1982). Thus, the following 
diagram commutes: 

A 
(qba~, qb-IF,,) I > a~F,, 

? 
,,V 

a , 
(a  ~ [a ) F,, 

(A.4) 

whence for yE V and bE V*, [a~] :(y, b)~-~<(l)a~[y)*~b is the bilinear map that 
corresponds to <a~l. 

In particular, the association with each ye  Vof the  map [a~](y, • ) = <(I)a~ ] y)  - from 
V to V* is the morphism (a scalar multiplication operator) in L[V, L(V*, V*)] 
corresponding to <a~[ e L( V® V*, V*). 

Thus, ape V* leads to two isomorphic operators, <a~[ and [aP], the former mapping 
tensors to dual vectors, and the latter mapping vectors to scalar multiplications. It 
is in this latter sense that <a ~] can be considered itself a dual vector (i.e. a "co- 
ordinate" in the representation aTi). Hence, R = Fi<a~[ can be interpreted as (iso- 
morphic to) a tensor, thus justifying the term "hybrid response tensor". 

Similarly, the ket vector [aa>eL(V*®V,  V)  is isomorphic to a morphism 
[a,] eL[ V*, L( V, V)]. Note that the bra and ket operators map responses to "compo- 
nents", and their isomorphic operators [a ~] and [aa] are equivalent to "co-ordinates". 
Co-ordinates belong to parameter space, and components belong to state space. 
Thus, this adjoint associativity states that parameters and states are in fact 
"adjoints". Another view on this universal duality is given in a different biological 
context by Rosen (1985), who considers a parameter space of genotypes and a state 
space of phenotypes. 
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APPENDIX B 

Independent Subsystems 

The number, m, of  subsystems determined by the projectors (20) is not limited by 
the dimension, n, of the underlying vector space, V. IL as may well happen, m > n, 
then it is impossible for the aie V* ( i= 1 . . . . .  m) to form a linear independent set. 
If k is the dimension of the subspace of V* spanned by a ~ ( k < m  and n), then the 
rank of the matrix (U')  is k. Thus, k is the number of  independent subsystems 
determined by the projectors associated with a given set of constitutive parameters. 
To see that this is a natural definition for independence consider a co-ordinate 
transformation that uncouples the subsystems; that is, diagonalize the matrix (L°) .  
All off-diagonal coupling coefficients become zero, and of the diagonal elements, 
only k of them will be non-zero. This means that for a transport system, where the 
forces and fluxes are in physical space (V= [~3), our metric theory of  irreversible 
thermodynamics (as it stands) would allow for at most three independent mobile 
molecular species. 

This apparent difficulty is solved by broadening our notion of  tensor. Strictly 
speaking, a tensor is defined over a single vector space; hence the notation TJ~(V). 
However, with a little sacrifice of some elegant properties under co-ordinate trans- 
formations, one can define tensor products between distinct vector spaces (and their 
duals). Although transport processes take place in three-dimensional space, we shall 
make the argument general: let F,E V (JiE V*) with dim V=n.  Furthermore,  let 
aie U* (ai~ U) with dim U=m.  For a fixed set of constitutive parameters ~i~ the 
response tensor is given by the m × n dyadic 

[:1 = a i F i  : aiJ i, (B. 1 ) 

with, as in (16), 

j i =  (a ' .  aJ)Fi = LUFj. (B.2) 

The space spanned by R is a metric space with norm 

II n H 2 = (a i . aJ)(Fi. Fj) = Lii(Fi. Fj) = Fi. ji_> 0. (B.3) 

To prove this, one need only follow the proof  that R ~ Tlj(V) is a metric space given 
in Richardson et al. (1982) or the alternate proof  in Louie & Richardson (1986). 
Since dim U=m,  it is obvious that a set {a i} can always be found corresponding to 
m independent subsystems. With Fie V and aiE U* it is seen more clearly that the 
response tensor, FL is a tensor product between state space and parameter space. 
This is analogous to the procedure in quantum mechanics where tensor products are 
used to represent complex systems: for example, a tensor product between position 
space and spin space. 
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The opposite of  independent subsystems is identical subsystems. Their proper 
specification and representation is of some practical importance because a naive 
superposition of  identical subsystems results in a misinterpretation of  tracer experi- 
ments and in the fallacious concept of  unidirectional fluxes (Richardson, 1989). 

APPENDIX C 

D a t a  R e d u c t i o n  A l g o r i t h m  

For  convenience, assume that dim V =  m = number of  species (so i=  1, 2 . . . . .  m). 
Thus, the set {a i} which we wish to determine from the data contains nfl components. 
The data consists of  the coefficients L it , determined empirically from ratios of  forces 
and fluxes. However, because of  symmetry (Onsager's reciprocity) the set {L ij} con- 
tains only m(m + 1)/2 independent values. 

The apparent dilemma of  having to obtain solutions to more unknowns than 
independent values is resolved by noting the form of  the phenomenological connec- 
tion between forces and fluxes: L ° =  (ailaJ).  In the calculation of  inner products, 
all information beyond lengths and angles is superfluous. That  is, the constitutive 
parameters, a i, need be determined only up to an orthogonal transformation. This 
is analogous to the situation in quantum mechanics, where a wave function is unique 
up to a unitary transformation of its basis set. 

The relation L ~i= (ail a -j) can be expressed as the matrix decomposition 

L = A A  v (C.I)  

where 

al [ a t ,  a2 . . . . .  am \ 
A = a2 = al, a~ . . . . .  a], (C.2) 

a" \aT', a~', . . . .  a',::/ 

Because of the Euclidean invariance observed above, we can set 

al = (all, 0, 0 . . . . .  0) 

a 2 = (a~,  a~ ,  0 ,  0 . . . . .  0 )  

a 3 = ( a  3, ~ , as, a~, 0, 0 . . . . .  0) 
(C.3) 

That  is, the m × m matrix A is lower triangular. The existence of  such a lower 
triangular matrix A for a positive definite matrix L is a well-known theorem in linear 
algebra (cf. e.g. Stewart, 1973), and (C. l )  for lower triangular A is the Cholesky 
decomposition of L. 
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The algorithm for Cholesky decomposition follows: 

For i= 1, 2 . . . . .  m 

F°r j =  l, 2'_ " i , i - 1  ' 

a~=(~' ~ 1 oka~)/o~ ,c4) 

k = l  

This algorithm requires ab6ut m3/6 multiplications and can always be carried to 
completion for positive definite L. 


