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Abstract
A natural system is an anticipatory system if it contains an internal predictive
model of itself and its environment, and in accordance with the model’s pre-
dictions, antecedent actions are taken. An organism is the very example of an
anticipatory system. Deep system-theoretic homologies allow the possibility of
obtaining insights into anticipatory processes in the human and social sciences
from the understanding of biological anticipation. To this end, a comprehensive
theory of anticipatory systems is the means. The present chapter is an exposition
on the mathematical foundations of such a theory.
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Historia

Robert Rosen formulated his theory of anticipatory systems during the academic
year 1971–72, when he was a visiting fellow at the now-defunct Center for the Study
of Democratic Institutions (CSDI) in Santa Barbara, California. The term ‘anticipa-
tory system’ first appeared in his publications in the paper “Planning, Management,
Policies and Strategies: Four Fuzzy Concepts” (Rosen 1974, which was first incar-
nated as an internally circulated CSDI Discussion Paper scheduled for the Center’s
‘Dialog’ on Tuesday, 16 May 1972). He defined therein the “anticipatory modes of
behavior of organisms” to be those

in which an organism’s present behavior is determined by (a) sensory information about the
present state of the environment, and (b) an ‘internal model’ of the world, which makes
predictions about future states on the basis of the present data and the organism’s possible
reactions to it.

It was also in this paper that the now-iconic diagram of an anticipatory system
first appeared in Rosen’s writings (Fig. 1).

In Fig. 1, S,M, and E are, respectively, object system, predictive model, and set of
effectors. (I shall have more to say about this diagrammatic representation later on in
this chapter.)

Biology is abounding with situations in which organisms can generate and
maintain internal predictive models of themselves and their environments, and use
the predictions of these models about the future for purpose of control in the present.
This is true at every level, from the molecular to the cellular to the physiological to
the behavioral, and this is true in all parts of the biosphere, from microbes to plants to
animals to ecosystems. One may succinctly postulate the

Fig. 1 Anticipatory system
1.1.1
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Axiom of Anticipation Life is anticipatory.
But anticipatory behavior, while a necessary condition for life, is not restricted to

the biological universe; it, indeed, encompasses the “four fuzzy concepts” and more.
At the human level it can be multiplied without end and may seem fairly trivial:
examples range from avoiding dangerous encounters to strategies in games and
sports, including those of economics and politics.

Although the concept of ‘anticipation’ had not been new, the systemic study of it
was when Rosen wrote his 1974 paper. Rosen’s rigorously mathematical study of
this biology-inspired subject led to a sequence of papers, culminating in his book
Anticipatory Systems: Philosophical, Mathematical, and Methodological Founda-
tions (Rosen 1985a; henceforth denoted by the symbol AS). Therein, in Section 6.1,
is the generalized, formal

Definition An anticipatory system is a natural system that contains an internal
predictive model of itself and of its environment, which allows it to change state at
an instant in accord with the model’s predictions pertaining to a later instant.

An anticipatory system’s present behavior depends upon ‘future states’ or ‘future
inputs’ generated by an internal predictive model. ‘Model-based behavior’ (or more
specifically ‘anticipatory-model-based behavior’) is the essence of social, economic,
and political activity. Beyond its organismic origins, an anticipatory system finds
analogies in social systems, economics, politics, ethics, future studies, and many
others. The common question in these diverse fields is that of ought, which may be
phrased as “What should we do now?”. However different the contexts in which the
question is posed, they are all alike in their fundamental concern with the making of
policy, and the associated notions of forecasting the future and planning for it. What
is sought, in each of these diverse areas, is in effect a strategy of decision making. An
understanding of the characteristics of model-based behavior is thus central to any
strategy one wishes to develop to control and manage such systems, or to modify
their model-based behavior in new ways. But underlying any strategy, there must be
an underlying substratum of basic principles: a science, a theory. Rosen proposed
that the theory underlying a strategy of policy generation is that of anticipatory
systems.

Note, in contrast, that a reactive system can only react, in the present, to changes
that have already occurred in the causal chain, while an anticipatory system’s present
behavior involve aspects of past, present, and future. The presence of a predictive
model serves precisely to pull the future into the present; a system with a ‘good’
model thus behaves in many ways as if it can anticipate the future. In other words, a
predictive model permits anticipation. Indeed, to use teleological language, the pur-
pose of a predictive model is to anticipate. The ‘anticipatory paradigm’ extends –
but does not replace – the ‘reactive paradigm’, which has dominated the study of
natural systems, and allows us a glimpse of new and important aspects of system
behavior.

Robert Rosen was a mathematical biologist. Anticipation is a necessary condition
of life: a living system anticipates. This is the connection that explains how Rosen, in
his lifelong quest of general principles that would answer the question “What is
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Life?”, happened to write, en passant, ‘the book’ AS on anticipation. The chapter
“Relational Biology” in this Handbook explains the placement of anticipation in the
context of this quest. For an expository introduction to Robert Rosen’s anticipatory
systems, the enthused reader may like to consult Louie (2010).

For emphasis, let me restate the definition of anticipatory system thus:

Definition An anticipatory system is a natural system that contains an

internal • predictive • model (1)

of itself and of its environment, which allows it to

change state at an instant in accord with the model’s predictions (2)

pertaining to a later instant.
Both (1) and (2) are crucial ingredients of anticipation. Having a model of the

future is not enough: although the entailment process of anticipation is embedded in
an anticipatory system’s defining component object (1), an anticipatory system must
also (2) make use of the prediction and take proactive antecedent actions accord-
ingly. True to the spirit of relational biology (cf. the chapter in this Handbook so
named), the crux in this definition is not what an anticipatory system itself is, but
what it does.

The Modelling Relation

A model is the representation of one system in another. The only perfect model of a
system is, however, the system itself. Otherwise, by genericity, by necessity, by
practicality, and indeed by definition, a model is incomplete and only captures a
proper subsystem.

Category theory is, among its many roles, the general mathematical theory of
modelling and, incidentally, the metalanguage of relational biology. The Appendix
of Louie (2009) is a terse summary. The definitive reference on this branch of
abstract algebra remains the quintessential Mac Lane (1997), to which I refer the
reader for further exploration of the category-theoretic topics that I am presenting in
this chapter. Category theory has metamorphized from its origins in the early 1940s,
when its founders Samuel Eilenberg and Saunders Mac Lane applied it to algebraic
topology (which may be considered as modelling geometry in algebra). It is now an
autonomous research area in contemporary mathematics and has metastasized into
theoretical computer science, mathematical physics, and, yes, mathematical biology.
Relational biology is, however, not the only approach in mathematical biology that
uses category theory; other notable approaches are, to name but two, that of the late
Ion Baianu (cf. Brown and Glazebrook 2013) and Memory Evolutive Systems of
Andrée Ehresmann and Jean-Paul Vanbremeersch (cf. the chapter “▶Anticipation in
MES-Memory Evolutive Systems” in this Handbook).
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The category in which the collection of objects is the collection of all sets (in a
suitably naive universe of small sets) and where morphisms are (single-valued)
mappings is denoted Set. The category in which the collection of objects is the
collection of all sets (in a suitably naive universe of small sets) and where morphisms
are set-valued mappings (equivalently, relations) is denoted Rel. (The first five
chapters of Louie 2013 is an introduction to the theory of set-valued mappings,
and the rest of the book is on their implications in biology.) For sets X and Y, the
hom-sets Set(X, Y ) and Rel(X, Y ) contain, respectively, all single-valued mappings
and all set-valued mappings from X to Y. Set(X, Y ) is a proper subset of Rel(X, Y );
Set is a non-full subcategory of Rel.

Modelling is the art that is the ultimate revelatory reflection of life. Having an
internal model of the world is a characterization of living systems; sentience is not a
prerequisite for this necessary fundamental property. With the animation into sentience
and the evolution into consciousness, however, modelling gains a volitional dimen-
sion. The teleological representation of one system in another is an ancient human
enterprise: one finds patterns and ever theorizes. Even the meta-modelling of model-
ling itself, i.e., to methodologically study modelling qua modelling as opposed to just
make models, can trace its genealogy back to antiquity. The epistemology of model-
ling involved scholars from Plato and Aristotle, through Kepler and Galileo, to
Newton, von Helmholtz, Mach, Hertz, Bohr, and many others.

Heinrich Hertz, in the introduction of his posthumously published masterwork
Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt (1894; English
translation The Principles of Mechanics Presented in a New Form, Hertz 1899),
gave the following meta-model:

We form for ourselves images or symbols of external objects; and the form which we give
them is such that the necessary consequents of the images in thought are always the images
of the necessary consequents in nature of the things pictured. In order that this requirement
may be satisfied, there must be a certain conformity between nature and our thought.
Experience teaches us that the requirement can be satisfied, and hence that such a conformity
does in fact exist. When from our accumulated previous experience we have once succeeded
in deducing images of the desired nature, we can then in a short time develop by means of
them, as by means of models, the consequences which in the external world only arise in a
comparatively long time, or as the result of our own interposition.

A model is an image in thought of an external object, with a certain conformity
between nature and thought: this is the essential meta-model Hertz communicated in
his introductory paragraphs before launching into the raison d’être of his book, the
Archimedes–Galileo–Newton–Lagrange–d’Alembert models of mechanics.

The endeavor of meta-modelling culminates in Robert Rosen’s modelling rela-
tion, a functorial (in the category-theoretic sense) diagrammatic representation he
first introduced in 1979 when he wrote AS. Modelling and meta-modelling are
essential ingredients in AS – to wit, chapter 3 is entitled “▶The Modelling Relation”
and chapter 5 is entitled “▶Open Systems and the Modelling Relation”. Indeed, the
main theoretical questions with which one deals in AS are (as Rosen summarized in
the Foreword of AS):
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(a) What is a model?
(b) What is a predictive model?
(c) How does a system which contains a predictive model differ in its behavior from

one which does not?

Amodelling relation is a commutative functorial encoding and decoding between
two systems. Between a natural system (an object partitioned from the physical
universe) N and a formal system (an object in the universe of mathematics) M, the
situation may be represented in the following diagram (Fig. 2).

Causal entailment is the manifestation of the Aristotelian efficient cause in natural
systems, and correspondingly inferential entailment is the manifestation of the
Aristotelian efficient cause in formal systems. The encoding e maps the natural
system N and its causal entailment c therein to the formal system M and its internal
inferential entailment i; i.e.,

e : N 7!M and e : c 7! i: (3)

The δecoding δ does the reverse. (The (e, δ) notation in Fig. 2 is my allusion to
the (e, δ) argument of mathematical analysis; viz. “8e > 0 ∃δ > 0 � � �.”) The
entailments satisfy the commutativity condition that tracing through arrow c is the
same as tracing through the three arrows e, i, and δ in succession. This may be
symbolically represented by the ‘composition’

c ¼ δ ∘ i ∘ e: (4)

Stated otherwise, one gets the same answer whether one, as in the left-hand side
of (4), simply sits as observers and watch the unfolding sequence of events c in the
natural system, or, as in the right-hand-side of (4), (i) encodes e some properties of
the natural system into the formalism, (ii) uses the implicative structure i of the
formal system to derive theorems, and then (iii) decodes δ these theorems into
propositions (predictions) about the natural system itself. When the commutativity
(4) holds, one has established a congruence between (some of) the causal features of
the natural system and the implicative structure of the formal system. Thence related,
M is a model of N, and N is a realization of M.

One may possibly construct parts of Fig. 2 from the brief Hertz passage on
“images” in his introduction to The Principles of Mechanics, but this is not sufficient

Fig. 2 The prototypical modelling relation
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to give Hertz precedence over Rosen in the formulation of the modelling relation.
While Hertz had the correct principles of meta-modelling (so did a host of scholars
before him), he did not produce any diagrams. Indeed, although The Principles of
Mechanics contained an abundance of mathematical formulae and equations, it had
no diagrams whatsoever. Rosen’s category-theoretic rendering of the modelling
relation as a commutative arrow diagram is his unique contribution. In any case,
when Hertz wrote his book, the birth of category theory (1945) was 50 years in the
future. So when one engages the modelling relation in terms of the functorial
diagram that is Fig. 2, one is clearly dealing with Robert Rosen’s modelling relation.

I emphasize that the attribution of the modelling relation to Rosen was not only
because he drew (a predecessor of) the arrow diagram Fig. 2. Block diagrams that
connect boxes with a flow of arrows had long been in existence, and they may be
considered subject-oriented specializations of directed graphs. Examples of these
block diagrams include component interaction diagrams in control theory, flow
diagrams in computer programming, and schematic diagrams in engineering, and
they all contain simple specimens isomorphic in form to Fig. 2. Rosen’s originality
was in presenting the levels of entailment (3) and the compositional commutativity
(4) in his meta-model from a category-theoretic standpoint.

Let me indulge in a bit of historic trivia on the evolution of the arrow diagram Fig. 2.
Rosen explicated the modelling relation in detail in his 1979 draft of Anticipatory

Systems (AS: 2.3), and the first arrow diagram was Fig. 2.3.1 therein (Fig. 3).
Note that in this inaugural version, causality in the left-hand-side natural system

was not yet part of the formulation. A variety of mundane nuisances delayed the
publication of AS until 1985; meanwhile, Rosen marched on with his meta-modelling.
By the first time the arrow diagram of the modelling relation appeared in print, as Fig.
1 on p.91 of Rosen (1980), the dual processes of “system behaviors” (causality) and

“rules of reference” (inference, implication) were in place (Fig. 4).
The modelling relation diagram made another pre-AS-publication appearance in

Rosen (1985b: Fig. 1 on p.179) (Fig. 5).
By this juncture in 1985, all three key ingredients of the modelling relation were

present: (i) the correspondence of objects

Fig. 3 Modelling relation, version 1 (AS Figure 2.3.1)
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Natural system ����

����!
Decoding

Encoding

Formal system (5)

(ii) the correspondence of morphisms

Causality ����

����!
Decoding

Encoding

Implication (6)

and (iii) the commutativity

arrow ① ¼ arrows ②þ③þ④ (7)

(cf. (3) and (4) above). (Note, however, that there was no retro-editing of AS’s
diagrams: all modelling-relation diagrams in AS were published without the left-
hand-side causality arrows.)

Figure 5 is the form of the functorial representation of the modelling relation that
Rosen would use henceforth (and almost always with the idiosyncratic – and
typesetting unfriendly – ‘circled number’ labels for the arrows). He revisited epis-
temological considerations of meta-modelling in Life Itself (Rosen 1991; notably
Section 3H on “The Modeling Relation and Natural Law”) and in Essays on Life
Itself (Rosen 2000; in particular chapter 10 “▶ Syntactics and Semantics in

Fig. 4 Modelling relation, version 2

Fig. 5 Modelling relation, version 3
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Languages”); a variant of the arrow diagram appeared therein, respectively, as Fig.

3H.2 and Fig. 10.1 (Fig. 6).

Natural Law

Natural order is woven into the fabric of reality. Causality is the principle that every
effect has a cause and is a reflection of the belief that successions of events in the
world are governed by definite relations. Natural Law posits the existence of these
entailment relations and that this causal order can be imaged by implicative order.
System is a basic undefined term, a primitive. It takes on the intuitive meaning of ‘a
collection of material or immaterial things that comprises one’s object of study’. In
relational, hence nonmaterial, terms, a system may be considered as a network of
interacting processes.

In terms of the modelling relation (Fig. 2), Natural Law is an existential declaration
of causal entailment c and the encodings e : N 7! M and e : c 7! i (cf. (3) above). A
formal system may simply be considered as a set with additional mathematical
structures. So the mathematical statement e : N 7! M, i.e., the posited existence for
every natural system N a model formal system M, may be stated as the axiom

Everything is a set: (8)

Causal entailment in a natural system is a network of mutually entailing efficient
causes. The mathematical statement e : c 7! i, i.e., the functorial correspondence of
morphisms, between causality c in the natural domain and inference i in the formal
domain, may thus be stated as an epistemological principle, the axiom

Every process is a ðset-valuedÞmapping: (9)

[See the exposition in Louie (2015) for the extension of (9) from “Every process
is a mapping.” (Louie 2009) to “Every process is a set-valued mapping.”] Together,
the two axioms (8) and (9), formalizing, respectively, the material and functional
parts of nature, are the mathematical foundation of Natural Law. They are manifest in
Wigner’s observation of “the unreasonable effectiveness of mathematics in the
natural sciences”. This wedding of mathematics to empiricism has the status of a

Fig. 6 Modelling relation,
version 4
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Euclidean ‘Common Notion’, a general logical principle that proclaims the mathe-
matical nature of the world and its fundamental correspondence to our cognitive
modes.

Axioms (8) and (9) serve to alternatively characterize a system as a network of
interacting (set-valued) mappings and therefore put our operation theater of model-
ling in the category Rel of sets and set-valued mappings. (I must mention in passing
that category theory has many flavors; some of which are not set-based. Axioms (8)
and (9) are the axioms of ‘our flavor’ of category theory for relational biology.) In
our practice, then, models are drawn from smaller non-full subcategoriesC ofRel, in
which C-objects are a selection of sets A, B, . . ., and C-hom-sets C(A, B) are proper
subsets of Rel(A, B):

CðA,BÞ � RelðA,BÞ ¼ PðA� BÞ: (10)

The collection of all models of a system N is denoted C(N ). C(N ) is a lattice as
well as a category. The category C(N ) is a subcategory of C, the source of our
modelling sets and mappings (Louie 2015). Let κ(N ) be the collection of all efficient
causes in N. An entailment network that models N may be denoted e(N ) � C(N );
the morphism correspondence e : κ(N ) ! κ(e(N )) implies e(κ(N )) � κ(e(N )).
Natural Law is the predicate calculus statement

8 N ∃ e ∃ M�CðNÞ : M ¼ eðNÞ
^ 8 c� κðNÞ ∃ i� κðMÞ : i ¼ eðcÞ: (11)

LetOC be the collection ofC-objects (that are sets) andAC be its collection of C-
morphisms (that are set-valued mappings). Thus a C-object is A � OC (although a
slight notational imprecision may permit A � C) and a C-morphism F belonging to
aC-hom-setC(A, B) is F � C(A, B) � AC. A model of N in the categoryCmay be
described as a formal system that is a network of mappings in AC, whence

eðNÞ � OC and eðκðNÞÞ � AC: (12)

For notational simplicity, one often drops the encoding symbol e and uses N to
denote both the natural system and its network model that is a formal system. Thus ‘an
entailment network e(N) that models a natural system N’ abbreviates to ‘an entailment
networkN’. Likewise the symbol κ(N) shall denote the collection of efficient causes in
both the natural system and the formal system. These identifications

eðNÞ ¼ N and eðκðNÞÞ ¼ κðNÞ (13)

amount to an implicit invocation of Natural Law, substituting systems with their
functorial images. I shall presently explore the consequences of this correspondence.

The canonical modelling relation (Fig. 2) provides a concrete embodiment of
Natural Law. But the relation may be generalized, so that the systems N and M may
both be natural systems or both be formal systems, and the entailments c and i are
corresponding efficient causes; i.e., the modelling relation may simply be a
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commutative diagram between ‘general systems’. The general modelling relation
has multifarious manifestations, e.g., category theory, analogies, alternate descrip-
tions, similes, metaphors, and complementarities (Louie 2009, sections 4.16–4.20).

A system N, whether natural or formal, considered as a network of interacting
processes, may be represented by the pair hN, κ(N )i. Note that in the previous
sentence, the symbol N is used for both the system and its underlying collection of
sets, whence ‘a system N’ instead of ‘a system hN, κ(N )i’. This convention in
mathematical usage will normally give rise to no confusion; one uses the latter
pair representation when the context requires it for clarity. In the context of the
equivalence imputed by this convention and the abbreviation (13), one has

N � OC and κðNÞ � AC: (14)

The general modelling relation in its minimalist category-theoretic form is the

arrow diagram thus (Fig. 7).

The Many Levels of the Encoding Functor

True to its category-theoretic taxonomy as functor, the encoding e maps on many
levels. On the category-of-models level,

e : N ! C Nð Þ: (15)

The encoding functor e assigns to each representation hN, κ(N )i of N a model
system

M, κ Mð Þh i ¼ e Nð Þ, e κ Nð Þð Þh i (16)

in C(N ). The assignment e : N 7! M is a choice mapping that singly selects, as a
specific model of the natural system N, the formal system M from the set C(N ). But
in addition to this set-pairing (N, M ) � e, e also functions on the point-pairing level
as a mapping

e : N 7!M (17)

Fig. 7 General modelling
relation
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from one set into another – to each input element (material cause) n � N, there
corresponds a unique output element (final cause)m � M such that (n, m) � e; i.e.,
e : n 7! m.

Let f : A ! B be a mapping representing a process in the entailment structure of
hN, κ(N )i. Suppose there is a mapping g : e(A) ! e(B) (which is a process in the
entailment structure of hM, κ(M )i) that makes the diagram

ð18Þ

commute; i.e., the equality of sequential compositions

e ∘ f ¼ g ∘ e, (19)

or, what is the same,

e f að Þð Þ ¼ g e að Þð Þ (20)

holds for all a � A. Note that this commutativity condition places no further
restrictions on the mapping g itself, other than that the two compositions need to
reach a common final destination. Such emphasis on the results regardless of the
manner in which they are generated (i.e., with no particular concern on underlying
principles) is the case when hM, κ(M )i is a simulation of hN, κ(N )i.

Together with the decoding δ, the commutativity condition (4) when applied to
the general modelling relation of Fig. 7 is

f ¼ δ∘g∘e , (21)

and may be drawn as the element trace

ð22Þ

This commutativity condition involves all four arrows in Fig. 7 and may be stated
as ‘whether one follows path f or paths e , g , δ in sequence, one reaches the same
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destination’, but, again, it places no further restrictions on the mapping g itself.
Systems hN, κ(N )i and hM, κ(M )i thus related are called surrogates of each other
(and that they satisfy a surrogacy relation).

If, in addition, the mapping g is itself entailed by the encoding e, i.e., if g = e( f ),
whence the mapping in hM, κ(M )i is e( f ) : e(A) ! e(B), then instead of (18), one
has the commutative diagram

ð23Þ

and the equality corresponding to (20), for every element a � A, is

e f að Þð Þ ¼ e fð Þ e að Þð Þ: (24)

When this more stringent condition (24) is satisfied, the simulation is called a
model. If this modelling relation is satisfied between the systems hN, κ(N )i and
hM, κ(M )i, one then says that there is a congruence between their entailment
structures, and that hM, κ(M )i is a model of hN, κ(N )i. The element-trace e : f 7! g
is a functorial correspondence of morphisms

e : κ Nð Þ ! κ Mð Þ: (25)

This process-pairing ( f, g) � e functions on a higher hierarchical level than
point-pairing, because now the output is itself a mapping g = e( f ) � κ(M ).
Together with the decoding δ, the commutativity condition (21) for a model is

f ¼ δ∘e fð Þ∘e: (26)

A simulation of a process provides a description of the entailed effects, whereas a
model requires more: a model is a special kind of simulation that additionally also
provides a description of the entailment structure of the mapping representing the
process itself. A simulation describes only one set of effects, but in itself reveals little
about the operative forces, and therefore tells nothing about what would have
happened under slightly different circumstances (in which case an entirely different
simulation might very well be required). A model, on the other hand, entailing both
structure and function of the effects, is structurally stable, and hence ‘nearby’ (in an
appropriate topological sense) effects would have similar models (with perhaps
slightly different constitutive parameters).

The encoding functor e of a model thus encompasses both kinds of entailment in
its effects: the output b = e(a) � M is an object, and ‘ b is material entailment; the
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output g = e( f ) � κ(M ) is a mapping, and ‘ g is functional entailment. (See the
chapter “▶Relational Biology” in this Handbook for explications of material entail-
ment, functional entailment, and the entailment symbol ‘.)

The category S of formal systems is the subject of Chapter 7 of Louie 2009. An
S-object is a pair hX, Ki, where X is a set and K � �X is a collection of mappings with
domain X (cf. axioms (8) and (9)). A general system hN, κ(N )i is a finite collection
{hXi, Kii : i = 1, . . . , n} of interconnected S-object components. N is the collection
of sets N = {Xi : i = 1, . . . , n}, whence, for each i � {1, . . . , n}, X i � N. The
relational diagram of κ(N) is a digraph representing the entailment network N; for
each i � {1, . . . , n}, Ki � κ(N ), but κ(N ) may also contain inter-component map-
pings, e.g., F : Xi ! Xj with i 6¼ j.

The many operational levels of the encoding functor e (and, by converse induc-
tion, of the decoding functor δ) are succinctly manifested in their roles as system
morphisms:

hN, κðNÞi  ����

����!
δ

e
hM, κðMÞi (27)

Recall that a model is almost always incomplete, so it generally cannot be a
model of the whole system hN, κ(N )i, but, rather, a proper subsystem hH, κ(H )i
� hN, κ(N )i. In view of the Natural Law statement (11) and containments (14),
encoding e entails, for each set A � H � N � OC and for each mapping F � C
(A, B) � κ(H ) � κ(N ) � AC, that

e : A 7! eðAÞ� eðHÞ ¼ M � OC
e : F 7! eðFÞ�CðeðAÞ, eðBÞÞ � κðMÞ � AC :

(28)

This is the sense of the functorial encoding of hN, κ(N )i into its model hM, κ(M )i:
the encoding functor e : hN, κ(N )i ! hM, κ(M )i is operationally the restriction
e|hH, κ(H )i : hH, κ(H )i ! hM, κ(M )i. With this understanding of ‘incomplete
models’, however, for simplicity of notation and metalanguage, one simply drops
the reference to the subsystem. Incidentally, the subsystem hH, κ(H )i � hN, κ(N )i
is a model of the system hN, κ(N )i; the encoding is the (restriction of) the identity
functor ι| hH, κ(H )i : hH, κ(H )i ! hH, κ(H )i. And, as I mentioned at the outset, the
only perfect model of a system is the system itself, the trivial encoding being
ι : hN, κ(N )i ! hN, κ(N )i.

The encoding and decoding arrows e and δ taken together establish a kind of
dictionary, which allows effective passage from one system to the other and back
again. Finally, one must note the extraneous status of the arrows e and δ, that they are
not a part of either systems hN, κ(N)i or hM, κ(M )i nor are they entailed by anything
in hN, κ(N )i or in hM, κ(M )i.
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Examples and Pluralities

Examples are in order. For instance, Claudius Ptolemy’s Almagest (c. AD 150)
contained a brilliant account for the apparent motion of many heavenly bodies.
The Ptolemaic system of epicycles and deferents, later with adjustments in terms of
eccentricities and equant points, provided good geometric simulations, in the sense
that there were enough parameters in defining the circles so that any planetary or
stellar trajectory could be represented reasonably accurately by these circular traces
in the sky. Despite the fact that Ptolemy did not give any physical reasons why the
planets should turn about circles attached to circles in arbitrary positions in the sky,
his quantitatively accurate yet qualitatively wrong simulations remained the standard
cosmological view for 1400 years. Celestial mechanics has since, of course, been
progressively updated with better theories of Copernicus, Kepler, Newton, and
Einstein. Each improvement explains more of the underlying principles of motion
and not just the trajectories of motion. The universality of the Ptolemaic epicycles is
nowadays regarded as an extraneous mathematical artefact irrelevant to the under-
lying physical situation, and it is for this reason that a representation of trajectories in
terms of them can only be regarded as simulation and not as model.

For another example, a lot of the so-called models in the social sciences are really
just sophisticated kinds of curve-fitting, i.e., simulations. These activities are akin to
the assertion that since a given curve can be approximated by a polynomial, it must
be a polynomial. As an illustration, consider that any given set of n þ 1 functional
data points (e.g., hollow dots in Fig. 8) may be fitted exactly, with an appropriately
chosen set of coefficients {a0, a1, a2, . . . , an}, onto a polynomial of degree n,

y ¼ a0 þ a1xþ a2x
2 þ � � � þ anx

n: (29)

(dashed curve in Fig. 8):

Fig. 8 Simulation versus model
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But a more appropriate curve through these points (they in particular being
population growth data), is the sigmoid curve

y ¼ K P0 e
rt

K þ P0ðert � 1Þ (30)

(solid curve in Fig. 8). One may note that the solid curve fits the data points less
precisely than the dashed curve, and this demonstrates that it is in fact more
important for a model to have the functorial correspondence of morphisms (25)
than the commutativity (19). Correct functional entailment is the hallmark of a good
model, while ‘approximate’ material entailment suffices. Stated otherwise, curve
fitting without a theory of the shape of the curve is simulation; model requires
understanding of how and why a curve takes its shape. In short:

simulation describes; model explains: (31)

‘Simulation’ is based on the Latin word similis, ‘like, similar’. A simulacrum is
‘something having merely the form or appearance of a certain thing, without
possessing its substance or proper qualities’. ‘Model’ in Latin is modulus, which
means ‘measure’; herein lies a fine nuance that implies a subtle increase in precision.
In common usage, however, the two words ‘simulation’ and ‘model’ are often
synonyms, meaning (a) a simplified description of a system put forward as a basis
for theoretical understanding, (b) a conceptual or mental representation of a thing,
and (c) an analogue of a different structure from the system of interest but sharing an
important set of functional properties. Some, alternatively, use ‘model’ to mean
mathematical theory and ‘simulation’ to mean numerical computation. What I have
presented above, however, is how these two words are used in relational biology.

There is a ‘polarity’ built into the general modelling relation of Fig. 7. While both
the encoding e and decoding δ are functors, their operations (and also the roles of the
systems hN, κ(N )i and hM, κ(M )i) are not interchangeable, even for simulations.
One reason is that the commutativity f = δ ∘ g ∘ e of (21) does not imply g = e ∘
f ∘ δ. The issue of when the former implies the latter is a deep topic of investigation,
and I shall explicate it elsewhere (Louie 2017).

A special case of congruence between two different natural systems hN 1, κ(N 1)i
and hN 2, κ(N 2)i occurs when they possess the same formal model hM, κ(M )i (or
alternatively, they constitute distinct realizations of hM, κ(M )i), as shown in Fig. 9.

One readily shows that one can then ‘encode’ the features of hN 1, κ(N 1)i into
corresponding features of hN 2, κ(N 2)i and, conversely, in such a way that the two
entailment structures, in the two systems hN 1, κ(N 1)i and hN 2, κ(N 2)i, are
brought into congruence. That is, one can construct from the above figure a com-
mutative diagram of the form shown in Fig. 10. This is a mutual modelling relation
between two natural systems (instead of the prototypical unidirectional case from a

natural system to a formal one).
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Under these circumstances depicted in the two previous figures, the natural
systems hN 1, κ(N 1)i and hN 2, κ(N 2)i are analogues. Analogous systems allow
us to learn about one by observing the other. Relations of analogy underlie the
efficacy of ‘scale models’ in engineering, as well as all of the various ‘principles of
equivalence’ in physics. But the relation of analogy has much deeper consequences.
Natural systems of the most diverse kinds (e.g., organisms, societies, economic sys-
tems, and political systems) may be analogous. In particular, it is precisely the fact
that biological systems and socioeconomic systems are analogous anticipatory
systems that provides the unifying foundation and impetus of the present collection
of essays that is the Handbook of Anticipation. Analogy is a relation between natural
systems that arises through the models of their causal entailments, and not directly
from their material structures. As such, analogy and its cognates offer a most
powerful and physically sound alternative to reductionism (viz., ‘share a common
model’ and therefore ‘analogous’, as opposed to ‘one encompasses the other’).

A complementary diagram to that of Fig. 9 is shown in Fig. 11, in which a single
natural system hN, κ(N )i is modelled in two distinct formalisms: hM 1, κ(M 1)i and
hM 2, κ(M 2)i. The question here is: What, if any, is the relation between the
formalisms hM 1, κ(M 1)i and hM 2, κ(M 2)i? The answer here is not in general as
straightforward as before; it depends entirely on the extent of the ‘overlap’ between
the two encodings of hN, κ(N )i in hM 1, κ(M 1)i and hM 2, κ(M 2)i; i.e., on e 1(N )
\ e 2(N ) � M 1 \ M 2 and e 1(κ(N )) \ e 2(κ(N )) �κ(M 1) \ κ(M 2). In some

Fig. 9 Common model

Fig. 10 Analogues
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cases, one can effectively build at least some encoding and decoding arrows between
the two formalisms. For a couple of examples, consider Dirac’s transformation theory
formulation of quantum mechanics which unifies Heisenberg’s matrix mechanics and
Schrödinger’s wave mechanics, and the relation between the thermodynamic and
statistical-mechanical models of fluids. In other cases, there exists no formal relation
between hM 1, κ(M 1)i and hM 2, κ(M 2)i. One then has the situation in which hN,
κ(N)i simultaneously realizes two distinct and independent formalisms; the various
Bohr’s complementarities for microphysical phenomena are examples.

Encoding and decoding functors may be composed; i.e., one can iteratively model
a model. This leads to a second configuration in which a natural system hN, κ(N )i is
related to two formal systems hM 1, κ(M 1)i and hM 2, κ(M 2)i.

Suppose the formal system hM 1, κ(M 1)i is a model of the natural system
hN, κ(N )i, the prototypical modelling relation being a transition from the realm of
science to that of mathematics. If one extracts only the predicative processes of
hM 1, κ(M 1)i, one may construct a purely syntactic ‘machine’ model hM 2, κ(M 2)i
of hM 1, κ(M 1)i, as in Fig. 12.

One may then consider only the outer two systems and forget about the original
model hM 1, κ(M 1)i. The formal system hM 2, κ(M 2)i is a machine model of the
natural system hN, κ(N)i and captures the latter’s purely syntactic aspects. The
encoding and decoding arrows themselves (the dashed arrows in Figure 12) between
hN, κ(N )i and hM 2, κ(M 2)i cannot be described as effective in any formal sense,
but they compose exclusively with the input and output strings of the Turing
machines in hM 2, κ(M 2)i, and these compositions may immediately be identified
with the effective processes in hN, κ(N )i. Whether these exhaust the implicative
resources of the system hN, κ(N )i itself serves to distinguish between predicative
and impredicative systems. (These antonymous adjectives of natural systems are
further explicated in the chapter “▶Complex Systems” in this Handbook.)

Fig. 11 Alternate models
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“Internal Predictive Model of Itself and of Its Environment”

Let hS, κ(S)i be an anticipatory system. The system S partitions the universe U into
self (S itself) and nonself that is its environment (S c = U � S). What does S’s
having a model of itself and of its environment mean? ‘S itself and its environment’
are the whole universe: S [ S c = U. A model is, however, by necessity incomplete,
so it cannot be a model of the ‘whole universe’ U but only a proper subsystem
W � U. Rosen’s original definition of anticipatory system actually uses the phrase
“of itself and/or of its environment”. It is my contention that this construction “and/
or” is unnecessary: both “self and/or environment” and “self and environment”
describe the universe U = S [ S c; and the requisite model is a proper subset W of
U.

That W is part of ‘S itself and its environment’ implies it may straddle the self |
nonself boundary: so possibly both W \ S 6¼ ∅ and W \ S c 6¼ ∅. The union
κ(W \ S) [ κ(W \ S c) of the processes within the two parts does not account for
all processes κ(W ) of W, however. In addition to the internal processes κ(W \ S) �
κ(S) and the environmental processes κ(W \ S c) �κ(S c), κ(W ) also contains
environmental effects on S and how the system S affects its environment. Anticipa-
tion in S entails the existence of a model M � C(W ) and an encoding functor

e : hW, κðWÞi ! hM, κðMÞi: (32)

We have already encountered (in the previous section) the multilevel entailments
of e. In particular, one has material entailment

e : W ! M (33)

and functional entailment

Fig. 12 Machine model
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e : κðWÞ ! κðMÞ: (34)

In common English usage, predict means ‘foretell, make a statement about the
future’; thus temporal succession is implicit. The word comes from the Latin prae,
‘before’, and dicere, ‘say’. Note, however, the ‘before’ that the Latin prefix prae-
(and pre-) predicates does not necessarily have to refer to time; it may also be before
in place, order, degree, or importance. It is with this general sense that one may
distinguish three temporally different classes of ‘predictions’:

(i) Extenders, predictions that are time-independent
(ii) Portents, predictions that relate simultaneous events
(iii) Transducers, predictions that convert information about the world at a given

instant into information about the world at some later instant

Time-independent predictions (i) concern a system’s constitutive parameters,
while time-dependent predictions (ii) and (iii) concern a system’s dynamics.

A model M is a reflector of its realization W. The functorial images e : W ! M
and e : κ(W ) ! κ(M ) above all serve to archive a copy of hW, κ(W )i in hM, κ(M )i.
An important purpose of modelling is that through the study of the alternate
description hM, κ(M )i, one produces explanations that decode to help in one’s
understanding of hW, κ(W )i. A good model should augur, i.e., suggest specified
outcomes and generate conclusions that are more than the building blocks used in the
construction of the model. A model predicts. To whichever class a prediction
belongs, what shapes the consequents is not what the encoding e supplies to the
model but, rather, what the decoding δ extracts from the model.

An anticipatory system hS, κ(S)i has to have more than one inherent dynamics,
more than one thing that one may consider ‘time’ (‘real time’ or otherwise). To have
anticipation of the system’s own subsequent behavior, something in the system must
be running ‘faster than real time’. This is a crucial role that is taken up by the
predictive model hM, κ(M )i. The predictive model in an anticipatory system must be
able to augur future events; i.e., its predictions must include those belonging to class
(iii), transducers. While the emphasis is on the requisite “the model’s predictions
pertaining to a later instant”, possible roles of hM, κ(M )i in the other two classes, (i)
extenders and (ii) portents, are not excluded. In other words, the model hM, κ(M )i, in
addition to offering predictions of potential futures, also considers past and present
states, and indeed time-independent aspects, of the system hS, κ(S)i and its environ-
ment. The anticipatory system hS, κ(S)i then inclusively integrates all these in the
execution of its present actions.

One notes that in order to fulfill its purpose of making predictions about the
future, the model hM, κ(M )i must have a ‘faster dynamics’ than its realization
hW, κ(W )i. This last phrase is an abbreviation, a terse summary that is interpreted
thus: if the trajectories of the system hW, κ(W )i are parameterized by real time, then
the corresponding trajectories of the model hM, κ(M )i are parameterized by a time
variable that goes faster than real time. That is, if hW, κ(W )i and hM, κ(M )i both start
at time t0 in equivalent states, and if (real) time runs until t1 > t0, then hM, κ(M )i
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will have proceeded further along its trajectory than hW, κ(W )i \ hS, κ(S)i, say to
t2 > t1. This is the sense in which the predictive model hM, κ(M )i operates on a
faster internal time scale than the system hS, κ(S)i itself. The system hS, κ(S)i can,
therefore, at ‘present time’ t look at the model hM, κ(M )i, which describes the system
hW, κ(W )i at some ‘future time’ t + h (with h > 0), and thereby obtain information
about its own possible state at t + h if it were to continue on its current trajectory. It is
in this way that the behavior of hM, κ(M )i predicts the behavior of hS, κ(S)i. Armed
with this information of a possible future, the anticipatory system hS, κ(S)imay then
make trajectory corrections if necessary.

It should be clarified that “anticipation” in Rosen’s usage, embodied in the

“predictive” model,does not refer to an ability to ‘see’ or otherwise sense the
immediate or the distant future – there is no prescience or psychic phenomena
suggested here. Instead, Rosen suggests that there must be information about self,
about species, and about the evolutionary environment, encoded into the organiza-
tion of all living systems. He observes that this information, as it behaves through
time, is capable of acting causally on the organism’s present behavior, based on
relations projected to be applicable in the future. Thus, while not violating time
established by external events, organisms seem capable of constructing an internal
time scale as part of a model that can indeed be manipulated to produce anticipation.
It is in this sense that degrees of freedom in internal models allow time its multi-
scaling and reversibility to produce new information. The predictive model in an
anticipatory system must not be equivocated to any kind of ‘certainty’ (even
probabilistically) about the future. Rosen’s theory of anticipation is a general
qualitative theory that describes all anticipatory systems. It is not a quantitative
theory of single systems for which the lore of large number of systems, hence
statistical reasoning, would ever enter into the picture. In other words, this theory
has nothing to do with stochastics. Anticipation is, rather, an assertion based on a
model that runs in a faster time scale. The future still has not yet happened: the
organism has a model of the future but not definitive knowledge of future itself.
Indeed, the predictive model may sometimes be wrong, the future may unfold very
differently from the model’s predictions, and the consequences of the mismatch may
be detrimental to the anticipator.

The predictive modelling activity of an anticipatory system is self-contained. That
the predictive model is internal means

M, κ Mð Þh i � S, κ Sð Þh i; (35)

that is to say,

M � S and κðMÞ � κðSÞ: (36)

The encodings (33) and (34) imply

eðWÞ � M and eðκðWÞÞ � κðMÞ: (37)
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Together with (36), one has

eðWÞ � S and eðκðWÞÞ � κðSÞ: (38)

The encodings (33) and (34) also immanently entail the corresponding decoding

δ : M! W (39)

and

δ : κ Mð Þ ! κ Wð Þ, (40)

whence

δðMÞ � W and δðκðMÞÞ � κðWÞ: (41)

These inclusions are succinct summary statements of the embodiment of antici-

pation, the internal predictive model (Fig. 13).
Now let us return to Fig. 1, the canonical diagram of an anticipatory system. I

shall use the same symbols for the object, model, and effector systems, respectively,
S, M, and E, to denote their efficient causes. In other words, let each symbol
represent the processor associated with the block (the “black box”) as well as the
block itself. Then the entailment diagram for the anticipatory system is

ð42Þ

The mappings labelled with circled numbers correspond to those in Fig. 1. The
mapping e : S ! M, completing the cycle, is the encoding of the object system S
into its model M, i.e., the restriction of the encoding functor (32) to W \ S. The
hierarchical entailment cycle

f S ‘ M, E ‘ S, M ‘ E g (43)

renders this anticipatory system impredicative. (Impredicativity is the defining
characteristic of complex systems as the latter term is used in relational biology. See
the chapters “▶Relational Biology” and “Complex Systems” in this Handbook for
further explorations.)
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“Change . . . in Accord with the Model’s Predictions”

An anticipatory system, however, has more structure in its entailment pattern than
the cyclic permutation of the three maps {M, E, S}. In particular, the hierarchical
action chain

S ‘ M ‘ E ‘ S (44)

must, as explained above, involve a faster dynamics in M. Also, the set E of
effectors functionally entails both the system S and the internal predictive model M:

② : E ‘ S and ③ : E ‘ M, (45)

a requisite iterative bifurcation that is not necessarily present in every hierarchical
cycle. Thus: “an anticipatory system must be complex; a complex system may be
anticipatory.”

Let me fractionate effector E into the functional components E S that acts on S and
E M that acts on M. While I am at it, I eliminate the circles around the numerical
labels of the arrows and split identically numbered arrows into as and bs. Recall that
the system’s environment is Sc = U � S. After all these modifications, the canon-
ical Fig. 1 of an anticipatory system becomes (Fig. 14).

I reemphasize that what defines an anticipatory system S is not just the existence
of the internal predictive model – there are two indispensable ingredients: (i) internal
predictive model M and (ii) response E to the prediction. The telos of anticipation is
for the system S ‘to change state at an instant in accord with the model’s predictions
pertaining to a later instant’. The central importance of this telos effected by E is
reflected in E S and E M having the largest number of influent and effluent arrows
among the blocks in Fig. 14.

Fig. 13 Internal predictive
model of itself and of its
environment
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That the anticipatory system has to respond in accord with the model’s prediction
means that the control system unit

E M ‘ M ‘ E S ‘ (46)

is iterated (for as many times as deemed necessary). With an iteration of cycle

(46), the telescoped Fig. 14 unfolds into the form in Fig. 15.

Fig. 14 Anticipatory system
with dual effectors

Fig. 15 Anticipatory system with unfolded antecedent actions
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Feedforth

Anticipation is an example of adaptive behavior. Adaptive control system theory is a
well-studied subject, but it is mostly formulated in terms of feedback control. In a
feedback system, control is error-actuated, and the stimulus to corrective action is the
discrepancy between the system’s actual present state and its targeted state. Stated
otherwise, a feedback control system is reactive; it must already be departing from its
nominal behavior before control begins to be exercised. There are two classes:
negative feedback and positive feedback. Negative feedback, the more common
variety, involves self-correcting control, with discrepancy-reducing processes that
seek to narrow the gap between actual and reference values of a parameter. Stereo-
typical examples are thermostat, cruise-control system in automobiles, and homeo-
stasis in organisms. Positive feedback, on the other hand, involves self-reinforcing
control, with discrepancy-enhancing processes that seek to widen the gap between
actual and reference values of a parameter. Many exocrine (enzymatic) and endo-
crine (hormonal) pathways in living systems engage positive feedback. “Self-fulfill-
ing prophecy” in socioeconomic systems is another example of positive feedback. In
most contexts, that feedback is positive or negative is not a value judgment; it does
not imply that it correspondingly causes good or bad effects. A negative feedback
loop is one that tends to slow down its controlled process, whereas a positive one
tends to accelerate it.

Anticipatory control, contrariwise, involves the concept of feedforth (or, conven-
tionally but less antonymously termed, “feedforward”). It is through feedforth that
the internal predictive model hM, κ(M )i of an anticipatory system hS, κ(S)i operates
a faster dynamics. Note that feedforth is not positive feedback: feedback, whether
negative or positive, uses information from the past (discrepancy that is the final
cause of processes that have come to pass), while feedforth uses information of the
future (as predicted by a model of final causes yet to be entailed). An illustrative
example of feedforth is a camera with automatic exposure control. The telos is to set
the exposure of a shot such that a relatively constant amount of light will be admitted
into the camera, regardless of the ambient light intensity (or, more technically, to
adjust the exposure setting to match the mid-tone of the subject to the mid-tone of the
image). There are two variables to consider: aperture and shutter speed. (Often the
shutter speed is fixed manually, with automatic aperture compensation. But the roles
of the two variables may be reversed, or both may be allowed to cooperatively
adjust.) It is useless to put a feedback sensor in the camera, for however fast the
feedback loop runs, the image will already be over- or underexposed before any
corrective measures can be implemented. Rather, an entirely different mode of
control is required, manifested in a light meter, which measures the ambient light
intensity, in conjunction with amodel that allow the prediction of the aperture/shutter
speed setting that, for that measured ambient light intensity, will allow an appropriate
amount of light into the camera. The camera is then preset at this aperture and shutter
speed combination before the picture is taken. (The assumption is, of course, that the
ambience does not change in the interval between the light-meter’s measurement at
time t and the actual shot at time t + h.) This mode of control, termed feedforth, does
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not involve the propagation of an error signal through the system. It is characterized
by the property that a preemptive action is undertaken, before system performance
has deteriorated, on the basis of some predictive model. This is precisely what is
required in an anticipatory system.

Imminence

In this chapter, I have presented:
(i) the mathematical foundations of anticipatory systems.
But note that this is neither:
(ii) the mathematical theory of anticipatory systems, nor

(iii) the mathematics of some particular anticipatory system.
The difference between (i) and (ii) is that the former is a metatheory that pre-

scribes the mathematics necessary for the study of anticipation (e.g., the algebra of
internal predictive models), while the latter dwells into the mathematical theory of
specific tools (e.g., the analysis of control systems as a formal platform of internal
predictive models). Stated otherwise, (i) is about the requisite ingredients of antic-
ipatory systems and (ii) is the actual study of the ingredients themselves.

There is a cornucopia of chapters in this Handbook showing how anticipation
specifically arises or is used in a variety of subjects. Occasionally some of these
chapters may even contain mathematical tools (iii) that are suitable for the tasks at
hand. To proceed from particular instances to the general concept is of course a very
common procedure in mathematics. One example, to mention but one analogy, is
that ‘symmetry’ appears abundantly in nature and in every subject of human
endeavor; in the minds of mathematicians, the study of symmetry itself is general-
ized into group theory. In this analogy, when (ii) is group theory, (i) would be the
philosophy of symmetry (concepts that need to be accounted for when formulating a
comprehensive theory of symmetry, such as harmony, balance, proportion, transfor-
mational invariance, etc.), and an example of a specific (iii) may be the algebra of the
order 8! � 37 � (12 ! /2) � 211 finite permutation group of Rubik’s Cube.

Since anticipatory systems serve as common models for such a diverse collection
of scholarly pursuits, it is natural that one would want to have a general mathematical
theory (ii) that would lend rigor to the subject. One must not simply linger on stage
(i), which is principally a descriptive enterprise of what (ii) has to entail but falls
short of being (ii) itself. Indeed, a main purpose for Rosen’s publication of AS was to
move toward such a general theory. The Axiom of Anticipation is a statement of self-
evident truth. AS provided (along with the philosophical and methodological foun-
dations) the mathematical foundations (i), as explicated and expanded in this chapter,
for the study of anticipatory systems. But one must not stagnate on the axiom, use it
as a slogan, and rest on its laurels. After proclaiming the obvious, that life is
anticipatory, one must move on to the next phase and attempt to develop a mathe-
matical theory of anticipation.

In the 1970s, Rosen lamented that “a study of anticipation is not yet even in its
infancy, despite the universality of this mode of control in the biological realm”.
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There has, alas, not been much progress in the development of a general mathemat-
ical theory (ii) in the 40 years thence (neither by Rosen himself nor by others). There
is, of course, the tried-and-true dynamical systems (in their various continuous and
discrete and recursive and adaptive and, last and decidedly least, computational
varieties), but more often than not their invocation in anticipation degenerates into
specific applications (iii) instead of being genuine comprehensive theories (ii). In
any case, there ought to be more to the mathematical tools of anticipation than the
less-than-satisfactory standby that are ‘glorified and modified dynamical systems’.
At the bottom of the barrel, ‘computational anticipatory systems’ are at best simu-
lations, not models. These two previous sentences are, incidentally, not flippant
comments, but are made for good relational-biologic reasons. An anticipatory
system must be impredicative, and an impredicative (‘complex’) system must have
at least one nonsimulable (‘noncomputable’) model. (See the chapter “▶Complex
Systems” in this Handbook for further details.) One must therefore move beyond
computation in anticipation.

When AS was finally published in 1985, Rosen had added an Appendix (Chapter
7 therein) to briefly sketch the development of the intervening years between 1979
and 1985. It was clear that his interest was not in anticipatory systems themselves,
but rather how they had provided a plateau from which to launch the final ascent to
the summit that was his one true lifelong quest, the answer to the question “What is
life?”. Indeed, the Appendix was not so much about anticipation than on complex
systems; anticipation was barely mentioned. Rosen’s dismissive conclusion was that
“our entire treatment of anticipatory systems becomes a corollary of complexity”.
The enlargement of “this Appendix into a separate monograph in the near future”,
incidentally, has since been realized as his iconoclastic masterwork Life Itself (Rosen
1991). In Life Itself, ‘anticipation’ was again scarcely mentioned in passing; therein,
Rosen began Chapter 1 thus:

This book represents a continuation, an elaboration, and perhaps a culmination of the circle
of ideas I have expounded in two previous monographs: Fundamentals of Measurement and
the Representation of Natural Systems (henceforth abbreviated as FM) and Anticipatory
Systems (abbreviated as AS). Both of these, and indeed almost all the rest of my published
scientific work, have been driven by a need to understand what it is about organisms that
confers upon them their magical characteristics, what it is that sets life apart from other
material phenomena in the universe. That is indeed the question of questions: What is life?
What is it that enables living things, apparently so moist, fragile, and evanescent, to persist
while towering mountains dissolve into dust, and the very continents and oceans dance into
oblivion and back? To frame this question requires an almost infinite audacity; to strive to
answer it compels an equal humility.

The main conclusion of Life Itself is that a natural system is living if and only if it
is closed to efficient causation, a property which in particular renders a living system
impredicative (‘complex’) (cf. the chapter “Relational Biology” in this Handbook).
After AS, Rosen never worked on anticipatory systems themselves again; a couple of
on-topic post-AS publications constituted recompiled, relinked, and otherwise
rearranged efforts, but no further developments. (Anticipatory system concepts
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would of course be new to readers who had not previously encountered them, but
these regurgitations did not contain anything new in the relational-biologic canon.)
When anticipation was mentioned at all in the rare instances, they were invariably, so
Rosen had declared, as “a corollary of complexity”.

It is important to remember that both complexity (impredicativity) and anticipa-
tion are necessary conditions for life, the containment hierarchy being

Impredicativity � Anticipation � Life: (47)

While we in relational biology may find it more congenial to characterize life in
terms of impredicativity instead of anticipation, this does not in any way diminish the
indispensability of anticipation in the understanding of biological, human, and social
sciences. There are deep system-theoretic homologies among these sciences. Analogy
allows the possibility of obtaining insights into anticipatory processes in the human
and social realms from the understanding of biological anticipation. To this end, a
comprehensive general mathematical theory of anticipatory systems is the means. This
is a quest, however quixotic a journey it may seem to be, we must continue.

Summary

Life � Anticipation � Impredicativity

Life anticipates. Social, human, and many other natural systems also anticipate. The
behaviors of anticipatory systems are largely determined by the nature of their
internal predictive models. This chapter lays the mathematical foundations for the
study of this important class of model-based systems. I leave the last words to our
founder; Robert Rosen closed (the 1979 first draft of) AS thus:

The study of anticipatory systems thus involves in an essential way the subjective notions of
good and ill, as they manifest themselves in the models which shape our behavior. For in a
profound sense, the study of models is the study of man; and if we can agree about our
models, we can agree about everything else.
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