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Abstract
Relational biology is a study of life in terms of the organization of entailment
relations in living systems, independent of any particular physical mechanism or
material realization. Anticipation is the pivot on which the relational study of life
revolves. An organism is the very example of an anticipatory system. Robert
Rosen’s systematic study of anticipation was founded under the auspices of his
determined journey in relational biology, a quixotic adventure that is now con-
tinuing in the next generation and beyond.
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Life Anticipates

Anticipation is a necessary condition of life: a living system anticipates. This
connection ultimately explains how the mathematical biologist Robert Rosen
(1934–1998), in his lifelong quest of general principles that would answer the
question “What is Life?”, happened to write, en passant, many papers on anticipa-
tory systems, culminating in his book Anticipatory Systems: Philosophical, Mathe-
matical, and Methodological Foundations (Rosen 1985a).

Rosen was a stalwart of a specific school of mathematical biology called rela-
tional biology, the study of biology from the standpoint of ‘organization of rela-
tions’. It was founded by Nicolas Rashevsky (1899–1972) in the 1950s, thence
continued and flourished under his student Rosen (who was, incidentally, my PhD
supervisor). The essence of reductionism in biology is to keep the matter of which an
organism is made and throw away the organization, with the belief that, since
physicochemical structure implies function, the reconstitution of the organization
from the analytic material parts may be attempted. Relational biology, on the other
hand, keeps the organization and throws away the matter; function dictates structure,
whence material aspects are synthetically entailed.

For a thorough exploration of the Rashevsky–Rosen school of relational biology (and
for a comprehensive illustration of the powers of our approach to the study of life), the
reader is cordially invited to read the two books that I have (so far) written on the subject.
The exploratory journey begins with the monograph More Than Life Itself: A Synthetic
Continuation in Relation Biology (Louie 2009) and continues with the monograph The
Reflection of Life: Functional Entailment and Imminence in Relational Biology (Louie
2013). The themes of the two books are, respectively, “What is life?” and “How do two
lifeforms interact?”. This present chapter of the Handbook is a terse introduction to
relational biology, with emphasis on its connection to anticipation, the topic at hand.

Respectus

Rashevsky, in 1939, founded the Bulletin of Mathematical Biophysics (now the
Bulletin of Mathematical Biology) after having been taken to task by the editor of
a physiology journal because his submitted (and accepted) paper on nervous
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excitation did not contain “original experimental observations”. Rashevsky, as a
physicist, began, as was the norm at the time, with an essentially reductionistic view
of the relation of biology to chemistry and physics. His successes at modeling
specific biological processes, however, instead of reinforcing his reductionism
began to gnaw at him in an increasingly something-is-missing sense. As he wrote
in Rashevsky (1954):

There is no record of a successful mathematical theory which would treat the integrated
activities of the organism as a whole... this integrated activity of the organism is probably the
most essential manifestation of life... These fundamental manifestations of life drop out from
all our present theories of mathematical biology... We must look for a principle which
connects the different physical phenomena involved and expresses the biological unity of
the organism and of the organic world as a whole.

This now-classic 1954 paper (“Topology and Life”) is generally acknowledged as
the origin of relational biology. Indeed, Rashevsky first discussed therein the ‘rela-
tional aspects’ of biology. By ‘relational’ he meant an approach that was based on the
algebraic, topological organizations of functions, as opposed to one based on the
analytic, metric, mechanistic, physicochemical organizations of structures, the latter
approach having theretofore dominated his subject of ‘mathematical biophysics’.

Here is Rashevsky’s basic idea: instead of starting with a mishmash of reduc-
tionistic fragments and attempting to find some a posteriori way of fitting them
together to generate integrated biological behavior, he might try to represent this
integrated behavior from the outset. Organisms are recognized as such because one
can recognize homologies in their behaviors, regardless of the physical structures
through which these behaviors are implemented. All organisms seek and ingest food,
metabolize it to generate energy, adapt, reproduce, etc. Rashevsky sought to repre-
sent the integrated manifestation of these biological functions, common to all
organisms, in mathematical terms. Through the basic and ubiquitous manifestation
of such functions, organisms could be mapped (‘biotopologically’) into one another
in such a way as to preserve these basic relations, and we could in fact hope to
construct a unified theory of organisms in this fashion. In this way, he was led to an
abstract topological structure that served as a kind of functional bauplan manifested
by any system that might be called an ‘organism’. Stated otherwise, one begins with
an abstract structure, of which any specific organism constitutes a realization. The
manner in which particular organisms relate to (or map onto) the bauplan then
establishes their relations to one another.

Rashevsky coined the term relational biology to characterize this qualitative
approach, as distinct from the quantitative approach that is metric biology. One of
its crucial premises is this: experimenters (e.g., biochemists or molecular biologists)
proceed by initially destroying all higher-level biological organization, leaving
behind a purely physicochemical system to be studied entirely by physicochemical
means. In other words, they proceed by abstracting away all organizational proper-
ties, hoping to recapture them in due course by synthetic arguments based on
encoded data from their analytic models. The relational approach, on the other
hand, proceeds in an exactly converse way; in effect, it initially abstracts away all
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purely physicochemical aspects, leaving behind a pure organization to be
represented and studied entirely by mathematical means. The detailed physics and
chemistry of such a system are to be recaptured later by a decoding process of
realization. (For a detailed explication of encoding, decoding, model, and realiza-
tion, consult the exposition on the modeling relation in the chapter on “▶Mathe-
matical Foundations of Anticipatory Systems” in this Handbook.)

Premise

The principles of relational biology may thus be considered the operational inverse
of reductionistic ideas. Relational biology is mathematical organization seeking
realizations, and reductionistic biology is physicochemical process seeking models
(Fig. 1).

One must understand that the ‘relational’ in ‘relational biology’ is not just an
adjective with its common-usage sense of ‘having an effect of a connection’
(sometimes even misinterpreted as ‘relative’). ‘Relational’ is more importantly
used in its mathematical sense that ‘a mathematical relation (subset of a product
set) exists’.

Operational inverses relational biology and reductionistic biology may be, but it
is important to note that we in the former are not antagonistic in any sense toward
practitioners of the latter. One does not argue with success. Molecular biology, the
poster child of reductionistic biology, is useful and has enjoyed popular success and
increased our understanding of life by parts. It is, however, also evident that there are
incomparably more aspects of natural systems that the physics of mechanisms is not
equipped to explain. It is the overreaching reductionistic claim of genericity (that
only material-based biology is biology) that is a misrepresentation and a falsehood.

In relational biology we often propose not one model for a specific biological
process, but many entirely different models that share a common formalism. It is the

Fig. 1 Relational biology
decodes; reductionistic
biology encodes
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commonality that makes them all models for a particular biological process which is
the true item of interest and not the detailed properties of any one of them. Thus our
interest is not on the details of individual mechanisms (as important as these might
be in many contexts), but on qualitative concepts of behavior, which may be
variously realized: what needs to be isolated is what these mechanisms share that
allows them to be realizations of a behavior.

In the rest of this chapter, I shall illustrate how relational biology attempts to
answer the ultimate biological question, “What is life?”. I will show how the concept
of anticipation arises in this process. “What is life?” is a very terse ontological
question. A slightly more explicit ontological formulation is “How is a living system
different from a non-living one?” or, epistemologically, “What are the defining
characteristics of a natural system for us to perceive it as being alive?”. A
relational-biologic answer will be of the form: “an organism is a material system
that realizes a certain kind of relational pattern (whatever the particular material basis
of that realization may be)”. The exercise, then, is to find this specific relational
pattern that defines life.

It is opportune here to point out the subtle difference between a material system
(or a physical system) and a natural system. A material system is ontological, it
being simply any physical object in the world. A natural system, on the other hand, is
a part, whence a subset, of the external world and a collection of qualities, to which
definite relations (of causal entailment) can be imputed. A natural system is, there-
fore, epistemological, since the partitioning of the external world and the formation
of percepts and their relations are all mental constructs (and are therefore entailed by
the bounds of mental constructs). In short, a natural system is a subjectively defined
representation of a material system. Note also that the existence of causal entailment
in a natural system is ontological, but the representation of causality, by arrows (i.e.,
as mappings), is epistemological.

Pegmata

I need some set-theoretic scaffolding to proceed.

Axiom of Specification For any set U and any statement p(x) about x, there exists a
set P, the elements of which are exactly those x � U for which p(x) is true.

To indicate the way P is obtained from the ‘universe’ U and the defining property
p, the customary notation is

P ¼ x�U : p xð Þf g: (1)

The ‘p(x)’ in (1) is understood (with the conventional omission of the predicate)
to mean “‘p(x)’ is true”; it may also be read as “x has the property p”. The axiom of
specification says that a set is defined by the property that its elements must satisfy.

The set specified by the property p, P = {x : p(x)}, has as its complement the set
specified by the property :p (not p); i.e.,
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Pc ¼ fx : : pðxÞg ½ ¼ fx�U : x =2 Pg ¼ U � P � (2)

[the set consisting of elements of U that do not have the property p].
A property p is more interesting if both P and Pc are nonempty. If either every

x � U or no x � U satisfies p(x) (which means, respectively, that hP = U, Pc =
∅i or hP = ∅, Pc = Ui, then property p defines no new subset of U. More
importantly, the pair hP, Pci of sets that is a subset and its complement defines a
partition of the universe U, in the sense that for each x � U, either x � P or
x � Pc, but not both; for each x � U, either x has the property p or it does not, but
not both:

8x : p xð Þ _ :p xð Þ½ � ^ : p xð Þ ^ :p xð Þð Þ½ �: (3)

Stated otherwise, the ‘barrier’ between P and Pc is ‘nonporous’ (Fig. 2).
In our discourse (that of relational biology), the universe is the collection N of

natural systems. An organism (in the sense of a general lifeform, a living system) is a
natural system. So, if L is the collection of all organisms, then (Fig. 3)

L � N: (4)

And trivially both L and Lc = N � L are nonempty.
Now, the answer to the “What is life?” question should consist of a property ‘

such that a natural system x is alive if and only if ‘(x) is true, i.e., iff ‘x has the
property ‘’:

L ¼ x�N : ‘ xð Þf g: (5)

Let P = {x : p(x)} and Q = {x : q(x)}, then

Fig. 2 A subset P and its
complement Pc partition U
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P � Q if and only if 8x pðxÞ ) qðxÞ: (6)

The equivalence (6) may be read as P � Q if and only if p is sufficient for q, and
also P � Q if and only if q is necessary for p.

Thus, the quest to answer the “What is life?” question is the search for a precise
definition of the ‘living condition’ ‘ that is necessary and sufficient. Explicitly, if q is
necessary for ‘, i.e., if

8x ‘ðxÞ ) qðxÞ, (7)

i.e., if a living system must have the property q, then (Fig. 4)

L � Q: (8)

The exercise is then to further restrict the ‘necessity’.
Conversely, if p is sufficient for ‘, i.e., if

8x pðxÞ ) ‘ðxÞ, (9)

i.e., if a natural system has the property p, then it is living, and then (Fig. 5)

P � L: (10)

In this case, the exercise is then to relax the ‘sufficiency’ to make it less stringent.
Also, if one knows a sufficient condition for life, then it is in principle possible to
realize the sufficiency thence fabricate life.

It is usually easier to discover necessary conditions q for life. The experimental
verification simply consists of: remove condition q and the organism dies. Sufficient
conditions are more difficult to come by.

Fig. 3 The partition of life
from nonlife
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In any event, our strategy is to derive a set of individually necessary and jointly
sufficient conditions for life. The set-theoretic motivation is that a set is the inter-
section of all its supersets:

A ¼
\
B �A

B: (11)

We strive for a set of individually necessary conditions, viz.:

‘ ) q1, ‘ ) q2, ‘ ) q3, . . . ; (12)

i.e.,

L � Q1, L � Q2, L � Q3, . . . : (13)

Then from these supersets Qi of L, one may construct a descending chain of
intersections,

Q1 � Q1 \ Q2 � Q1 \ Q2 \ Q3 � � � � � L, (14)

Fig. 4 Necessity for life

Fig. 5 Sufficiency for life
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that will ideally converge to L in the limit. In practice, however, one may not get the
(necessarily finite) sequence to converge to L. All one can do is to find supersets
Q1 � L, Q2 � L, Q3 � L, ..., Qn � L (corresponding to necessary conditions q1, q2,
q3, . . ., qn), so that their intersection\n

i¼1Qi is as close to L as one can achieve. Then
one defines

‘ ¼
n̂

i¼1

qi (15)

(whence

L ¼
\n
i¼1

Qi Þ, (16)

and declares the joint sufficiency that all natural systems satisfying simultaneously
the conditions q1, q2, q3, . . ., qn are alive. This may include some natural systems that
are not obviously alive, but one defines them to be (Fig. 6).

Opera

Consider the following three properties of a natural system x � N:

Fig. 6 Individually necessary and jointly sufficient conditions for life
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q 1ðxÞ ¼ x is impredicative;
q 2ðxÞ ¼ x is anticipatory;
q 3ðxÞ ¼ x is closed to ef f icient causation:

Each defining term, of course, requires explanation, which I shall do presently.
But let me first give an overview of the argument. It turns out that each of the three
properties is a necessary condition for life, i.e.,

‘ ) q1, ‘ ) q2, ‘ ) q3: (17)

But more than that, they are related by sequential implications:

‘ ) q3 ) q2 ) q1: (18)

This means Q2 = Q1 \ Q2 and Q3 = Q1 \ Q2 \ Q3, and the three supersets Q1,
Q2, and Q3 of L form a descending chain:

Q1 � Q2 � Q3 � L: (19)

One then declares the sufficiency of q3 for life that Q3 is the closest that one gets
to L in the relational-biologic approach and defines

L ¼ Q3, (20)

which is the bold statement of

The Fundamental Theorem of Relational Biology A natural system is an organ-
ism if and only if it is closed to efficient causation.

Robert Rosen’s lifetime’s opera are embodied in his trilogy:

• Fundamentals of Measurement and Representation of Natural Systems (Rosen
1978)

• Anticipatory Systems: Philosophical, Mathematical, and Methodological Foun-
dations (Rosen 1985a)

• Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of
Life (Rosen 1991)

The following additional references are also notable milestones:

• “Some relational cell models: the metabolism–repair systems” (Rosen 1972)
• “Organisms as causal systems which are not mechanisms: an essay into the nature

of complexity” (Rosen 1985b)
• Essays on Life Itself (Rosen 2000)

Historically, the condition q2 (anticipation) was introduced in Rosen (1985a,
although the first draft of the book was completed in 1979); condition q1
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(impredicativity) first appeared in Rosen (1985b) and then was explicated in detail
along with condition q3 (closure to efficient causation) in Rosen (1991). The various
essays in Rosen (2000) further illustrate these conditions and their connections.
Metabolism–repair systems, the very picture of closure to efficient causation, were
the topic of Rosen’s PhD thesis and his first published paper (Rosen 1958), and
Rosen (1972) remains the most comprehensive treatise on this subject.

Anticipation

As mentioned at the outset, anticipation is a necessary condition for life: a living
system anticipates. In Rosen (1985a), the Foreword contains the passage:

. . . biology is replete with situations in which organisms can generate and maintain internal
predictive models of themselves and their environments, and utilize the predictions of these
models about the future for purpose of control in the present. Many of the unique properties
of organisms can really be understood only if these internal models are taken into account.

and in Section 1.1:

. . . obvious examples of anticipatory behavior abound in the biosphere at all levels of
organization, and that much (if not most) conscious human behavior is also of this character.

One proclaims the

Axiom of Anticipation Life is anticipatory.
Anticipation is, of course, the raison d’être of the present Handbook. I shall

provide a comprehensive exposition on Robert Rosen’s theory of anticipatory
systems in the chapter on “▶Mathematical Foundations of Anticipatory Systems”.
For now, as a stepping stone toward a characterization of life, it suffices to give a
terse

Definition A natural system is an anticipatory system if

(i) it contains an internal predictive model of itself and its environment,⁠ and
(ii) in accordance with the model’s predictions, antecedent actions are taken.
 Let

aðxÞ ¼ x is an anticipatory system ð¼ q2ðxÞÞ, (21)

whence

A ¼ fx�N : aðxÞg ¼ the collection of all anticipatory systems: (22)

The axiom of anticipation thus says

8x ‘ðxÞ ) aðxÞ (23)

Relational Biology 11
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and (Fig. 7)

L � A: (24)

One notes that all complementary sets are nonempty: for example, a simple
mechanism is not anticipatory: umbrella � Ac = N � A, and a socioeconomic
system is a nonliving anticipatory system: SES � A � L (Fig. 8).

Impredicativity

In logic, the predicate is what is said or asserted about an object. It can take the role
as either a property or a relation between entities. Thus predicate calculus is the type
of symbolic logic that takes into account the contents (i.e., predicate) of a statement.
The defining property p(x) in P = {x � U : p(x)} (cf. (1) above) is an example of a
predicate, since it asserts unambiguously the property that x must have in order to
belong to the set P.

Contrariwise, a definition of an object is said to be impredicative if it invokes
(mentions or quantifies over) the object itself being defined or perhaps another set
which contains the object being defined. In other words, impredicativity is the
property of a self-referencing definition. Impredicative definitions usually cannot
be bypassed and are mostly harmless. But there are some that lead to paradoxes and
may entail ambiguities.

Let the property i be defined thus

iðxÞ ¼ x is an impredicative system; (25)

then

I ¼ x�N : i xð Þf g ¼ the collection of all impredicative natural systems: (26)

Fig. 7 Life is anticipatory
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A natural system that is not impredicative is called predicative, whence

Ic ¼ fx�N : : iðxÞg
¼ the collection of all predicative natural systems:

(27)

Recall that there is a ‘nonporous’ boundary between I and I c, which cannot be
crossed at all in either direction. The partition is built into the set-theoretic logic.
There are no purely syntactic operations, i.e., no finite number of rote repetitions that
will produce predicativity from impredicativity, or vice versa (Fig. 9).

In Rosen’s lexicon, members of I c are simple systems (also called mechanisms),
and members of I are complex systems. There are, alas, unfortunate derogatory
connotations of the burdened terms: physics deals with simple systems; biology
deals with complex systems. The dubious ordering ‘complex > simple’ entails an
implied hierarchy of importance. Indeed, to have one’s subject labeled ‘simple’ may
be seen as a slight. Also, there are almost as many definitions of complexity as
schools involved in the study of the topic, and the overused term ‘complex(ity)’ is
consequently rendered quite meaningless. It is perhaps better off sticking with the
‘neutral’ adjectives of I c = predicative systems and I = impredicative systems. An
added advantage is that since ‘predicativity’ and ‘impredicativity’ are not words of
common usage, there is less chance of equivocation. For an alternate exposition on
‘complex systems’, see the chapter on “▶Complex Systems” in this Handbook.

Fig. 8 Anticipatory and non-anticipatory systems
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For our purpose here of reaching a characterization of life, it is sufficient to
consider the

Theorem An anticipatory system must be impredicative; an impredicative system
may (or may not) be anticipatory.

(See the chapter on “▶Mathematical Foundations of Anticipatory Systems” in
this Handbook for further discussion of this implication, 8x a(x) ) i(x).) Thus one
has the proper containment:

A � I: (28)

Together with the containment L � A from (24) above, one has the containments
shown in Fig. 10.

Fig. 9 I and I c partition N

Fig. 10 L � A � I
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Avirus is impredicative but not anticipatory: virus � I � A. This is because it is
an isolated repair component (more on this later), but only uses the host’s anticipa-
tory processes to reproduce itself when joined (Fig. 11).

The proper containments (24) and (28) together say

L � ðA � Þ I, (29)

whence

Rosen’s Theorem An organism must be impredicative; an impredicative system
may (or may not) be an organism.

Impredicativity is a necessary condition of life, but not life itself.

Mappings and Their Relational Diagrams

Let f : A ! B be a mapping from set A to set B; this situation may also be denoted
f � H(A, B), whereH(A, B) � BA is a hom-set (of mappings from A to B). When f is
represented in the element-chasing version f : a 7! b (where a � A and b � B),
its relational diagram may be drawn as a network with three nodes and two directed
edges, i.e., a directed graph (or digraph for short):

ð30Þ

Fig. 11 Relational virology
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The hollow-headed arrow denotes the flow from input (material cause) a � A to
output (final cause) b � B, whence the final cause of the mapping may be identified
also as the hollow-headed arrow that terminates on the output:

ð31Þ
The solid-headed arrow denotes the induction of or constraint upon the flow by

the processor (efficient cause) f, whence the efficient cause of the mapping may be
identified also as the solid-headed arrow that originates from the processor:

ð32Þ
The formal cause of the mapping may be identified as the ordered pair h processor,

flow i of the two kinds of arrows:

ð33Þ
The processor and output relationshipmay be characterized ‘f entails b’, denoted by

f ‘ b (34)

where ‘ is called the entailment symbol. The efficient cause f, the processor of
entailment ‘ and at the tail of the solid-headed arrow, is that which entails. The final
cause b, the target of entailment ‘ and at the head of the hollow-headed arrow, is that
which is entailed. A relational diagram is also called an entailment network.

The relational diagrams of mappings may interact: two mappings, with the
appropriate domains and codomains, may be connected at different common
nodes. (For an in-depth study on the various modes of connections, see Chapter 5
of Louie 2009 and Chapter 10 of Louie 2013.)

Composition of two mappings involves the combination of their digraphs in such
a way that a final cause of one is relayed to become an ingredient of the other; i.e.,
when one mapping entails some component of the other. Two of the interactions of
two mappings may be considered as compositions:

ð35Þ
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and

ð36Þ

The relational interaction (35) arises when one has two mappings f � H(A, B)
and g � H(X, A), whence the codomain of g is the domain of f. Let the element
chases be f : a 7! b (thus f ‘ b) and g : x 7! a (thus g ‘ a), whence the final cause
of g is the material cause of f. When that which is entailed is used as material cause
(by another process), as is the case for ‘‘ a’ in g : x 7! a followed by f : a 7! b,
the entailment is called material entailment. The relational diagrams of these two
mappings connect at the common node a as in

ð37Þ

This sequential composition of relational diagrams represents the composite map-
ping f ∘ g � H(X, B) with f ∘ g : x 7! b and has the abbreviated relational diagram:

ð38Þ

whence the corresponding entailment diagram is

f∘g ‘ b (39)
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( f ∘ g entails b).
Next, the relational interaction (36) happens when one has two mappings f � H

(A, B) and g � H(X, H(A, B)), whence the codomain of g contains f. Because of
this ‘containment’, the mapping g may be considered to occupy a higher ‘hierarchi-
cal level’ than the mapping f. Let the element chases be f : a 7! b and g : x 7! f,
whence the final cause of g is the efficient cause of f. When that which is entailed is
an efficient cause (of another process), as is the case for ‘‘ f ’ in g : x 7! f (with
f : a 7! b in turn), the entailment is called functional entailment. In functional
entailment, one has the hierarchical composition of relational diagrams

ð40Þ

with the corresponding composition of entailment diagrams

g ‘ f ‘ b: (41)

Note that diagram (41) shows an iterative entailment of an entailment. A com-
parison of (39) and (41) reinforces the graphical differences of diagrams (35) and
(36) and shows that sequential composition and hierarchical composition are differ-
ent in kind: they are different both formally and in content.

Hierarchical Cycle

A formal system is an object in mathematics. The chapter on “▶Mathematical
Foundations of Anticipatory Systems” in this Handbook contains a more detailed
explanation. Here one may simply consider a formal system as a set Swith a collection
κ(S) of mappings, so a formal system is the ordered pair hS, κ(S)i. The mappings may
compose to form a very complicated pattern of inferential entailment in a network. The
various network topologies are explored in Chapter 6 of Louie 2009.

There is one mode of connection that is of special interest: when two or more
hierarchical compositions are involved in a cycle, i.e., a closed path. (Note that a closed
path in the directed graph sense means the arrows involved have a consistent direction.)
This is called a closed path of efficient causation. In other words, a closed path of
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efficient causation is an entailment cycle that contains two or more efficient causes.
Both the hierarchy of containment and the cycle are essential attributes of this closure.

For example, consider three mappings from a hierarchy of hom-sets,

f �HðA,BÞ, g�H
�
C,HðA,BÞ

�
, h�H

�
D,H

�
C,HðA,BÞ

��
: (42)

Their hierarchical compositions form the relational diagram:

ð43Þ

(where, naturally, a � A, b � B, c � C, and d � D). Now suppose there is a
correspondence between the sets B and H(D, H(C, H(A, B))). Then an isomorphic
identification between b and h may be made, and a cycle of hierarchical composi-
tions results

ð44Þ
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In diagram (44), one may say that the hierarchical compositions of the three maps
{f, g, h} are in cyclic permutation. The corresponding cyclic entailment pattern is

ð45Þ

One may say that the diagram (45) represents the cyclic entailments:

f g ‘ f , h ‘ g, f ‘ h g: (46)

Formally, one has the

Definition A hierarchical cycle is the relational diagram in graph-theoretic form of
a closed path of efficient causation.

Impredicativity and Clef

Note that in a hierarchical cycle (e.g., arrow diagram (44)), there are two or more
solid-headed arrows (since a closed path of efficient causation is defined as a cycle
containing two or more hierarchical compositions). A hierarchical cycle is by
definition the formal system representation (i.e., encoding) of a closed path of
efficient causation in a natural system, so trivially one has the following

Lemma A natural system has a model containing a hierarchical cycle if and only if
it has a closed path of efficient causation.

Because of this equivalence of a closed path of efficient causation in a natural
system and a hierarchical cycle in its model, the term hierarchical cycle, although
defined for formal systems, sometimes gets decoded back as an alternate description
of the closed path of efficient causation itself. In other words, one may speak of a
hierarchical cycle of inferential entailments as well as a hierarchical cycle of causal
entailments.

Having a hierarchical cycle turns out to be equivalent to impredicativity:
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Theorem A natural system is impredicative (i.e., ‘complex’) if and only if it
contains a closed path of efficient causation. A natural system is predicative (i.e.,
‘simple’) if and only if it contains no closed path of efficient causation.

Stated otherwise, a natural system is impredicative if and only if it has a model
that contains a hierarchical cycle.

In formal systems, closed paths of efficient causation, i.e., cycles of entailment,
are manifested by impredicatives (or ‘self-references’). In science, where entailment
means causality, causal cycles empower a rigorous study on categories of final
causation, whence on function and anticipation. To say that something is a final
cause of a process is to require the process to entail something. Final cause thus
requires something of its effect. Indeed, a final cause of a process must entail the
entailment of the process itself. (See, in particular, the discussion on ‘immanent
causation’ in the last few sections of Chapter 5 of Louie 2009.) It is this peculiar
reflexive character of final causation that links it intimately to impredicative, hierar-
chical cycles, in which the hierarchical compositions are precisely ‘entailments of
entailment’.

Note that an impredicative system only requires the existence of a hierarchical
cycle that contains two or more processes. There may be many of its constituent
processes that are not part of hierarchical cycles.

Definition A natural system is closed to efficient causation if its every efficient
cause is entailed within the system.

Theorem Closure to efficient causation for a natural system means it has a formal
system model in which all of the efficient causes in its causal entailment structure are
contained in closed paths; i.e., all efficient causes are components of hierarchical
cycles.

This theorem allows the description closed to efficient causation to be used on
formal systems, those with all efficient causes involved in hierarchical cycles.

Let me emphasize that the predicates ‘contains a closed path of efficient causa-
tion’ and ‘closed to efficient causation’ are not equivalent. The class of systems that
are closed to efficient causation forms a proper subset of the class of systems that
contains a closed path of efficient causation. Members of the latter class, i.e.,
impredicative systems, are required to have only some, and not necessarily all,
processes involved in hierarchical cycles.

Instead of the verbose ‘closed-to-efficient-cause system’ or ‘systems that are
closed to efficient causation’, in Louie and Poli (2011), we have introduced a new
term ‘clef system’ (for closed to efficient causation) with the

Definition A natural system is clef if and only if it has a model that has all its
processes contained in hierarchical cycles.

Analogously, a clef formal system is one that has all its mappings contained in
hierarchical cycles. The word ‘clef’ means ‘key’, so this terminology has the added
bonus of describing the importance of the class of clef systems.

Let
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c xð Þ ¼ x is a clef system: (47)

Then

C ¼ x�N : c xð Þf g � I (48)

with proper containment. In other words, the class of clef systems forms a proper
subset of the class of impredicative systems.

Metabolism and Repair

As mentioned above, Robert Rosen, a stalwart in relational biology, devised in the
1950s a class of relational models called metabolism–repair systems ((M,R)-
systems).

Relational biology has a functional view of life, expressed in terms of processes
that organisms manifest, independent of the physical substrata on which they are
carried out. An organism, being a system open to material causation, must have
processes that are modes of interaction with the world. It must have inputs from the
world, typical material inputs which supply energy and which provide the capacity
for renewing the structure of the organism, whatever it might be. So it is a sine qua
non that one has to have a metabolic apparatus. The word metabolism comes from
the Greek μeταβoλή, ‘change’, or μeταβoλισμóς, ‘out-throw’, i.e., an alteration or a
relay of materials. Metabolism, in its most general form, is thus a mapping f : x 7!
y in which ‘ y is material entailment.

An organism must also have a genetic apparatus, information carriers that tell
how the products of metabolism are to be assembled. The genetic apparatus serves
two functions: to produce the metabolic apparatus of the organism and to reproduce
it. Rosen called the genetic processes repair, which, in its most general form, is a
mapping f : x 7! y in which ‘ y is functional entailment.

The English word ‘repair’ comes from the Latin re + parare, ‘make ready again’.
It is, of course, a word in common usage and means ‘restore to good condition or
proper functioning after damage or loss’; ‘renovate or mend by replacing or fixing
parts or by compensating for loss or exhaustion’; ‘set right or make amends for loss,
wrong, or error’. Rosen defined the technical usage of the term ‘repair’ in relational
biology, precedently back in the beginnings of (M,R)-systems in the 1950s, to mean
a hierarchical process for which ‘the output of a mapping is itself a mapping’. This is
the general telos of ‘repair’, that of an action taken to generate another action. The
entailed process may possibly be previously existing, but repair does not have to be a
‘return to normalcy’ or ‘restore to original condition’; the goal of ‘the fix works’ is
more important. It is unfortunate (but ultimately irrelevant) that the technical term
now, alas, suffers semantic equivocation because of its usage in molecular biology to
insularly mean biochemical repair of a specific molecule, that of ‘DNA (and
sometimes RNA) repair’. This restricted usage is a very example of the meager
appropriating the generic. Since the word ‘repair’ is not a specially coined word, its
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biological definition is not entitled to a universal decree. And in the absence of a
default, Humpty Dumpty’s rule applies: “When I use a word, it means just what I
choose it to mean – neither more nor less.”

To recap, our Unabashed Dictionary of Relational Biology defines

metabolism ¼ material entailment,

 repair ¼       functional entailment. (49)

Anything that one would want to call ‘alive’would have to have at least these two
basic functions of M and R. (M,R)-systems began as a class of metaphorical,
relational paradigms that define cells. It is, however, not much of a hyperbole to
declare that all of Rosen’s scientific work – his lifelong quest being the answer to the
question “What is life?” – has arisen from a consideration of topics related to the
study of (M,R)-systems.

Definition
(a) An (M,R)-network is an entailment network of a finite collection of metabolism

and repair components.

(b) An (M,R)-system is an (M,R)-network that is closed to efficient causation.
Not every system is an (M,R)-network. This is because the terse definition (a)definitiona
above has hidden some connection details; it has the verbose (and mathemat-
ically technical) expansion thus:

Definition Metabolism and repair are input-output systems that are connected as
components into a network. They are formal systems with the following further
category-theoretic structures.
(i) A metabolism component is a formal system Mi = h Ai, H(Ai, Bi) i.
(ii) A repair component is a formal system Ri = h Yi, H(Yi, H(Ai, Bi)) i.
(iii) A metabolism–repair network, i.e., an (M,R)-network, is a finite collection of

pairs of metabolism and repair components {(Mi, Ri) : i � I}, connected in a
model network. In particular, the outputs of a repair component Ri are observ-
ables in H(Ai, Bi) of its corresponding metabolism component Mi. The metab-
olism components may be connected among themselves by their inputs and
outputs (i.e., by Bk � Aj for some j , k � I ). Repair components must receive
at least one input from the outputs of the metabolism components of the
network (i.e., Y i ¼ ∏n

k¼1Bi k with n � 1 and where each ik � I ).

Note that the connections specified in (iii) are the requisite ones; an (M,R)-
network may have additional interconnections among its components and with its
environment.

This is not the place for an exposition on (M,R)-systems. In addition to the
comprehensive reference Rosen (1972), the enthused reader may like to consult
Chapters 11–13 of Louie (2009) and Chapter 7 of Louie (2013). For illustrative
purposes, here is an (M,R)-network with six pairs of metabolism–repair components
(Fig. 12).
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Let

mðxÞ ¼ x is an ðM,RÞ�network, (50)

rðxÞ ¼ x is an ðM,RÞ�system, (51)

M ¼ f x�N : mðxÞ g ¼ ðM,RÞ�networks, (52)

and

R ¼ f x�N : rðxÞ g ¼ ðM,RÞ�systems: (53)

Note that

N � M 6¼ ∅ (54)

because not all systems have the requisite structure in the definition of an (M,R)-
network. In Section 13.14 of Louie (2009), I have shown that, however, an antici-
patory system contains the necessary entailment, that for each i � I one must have
Ri ‘ Mi of an (M,R)-network, so

A � M: (55)

Theorem A anticipatory system is an (M,R)-network.
By definition, an (M,R)-system is an (M,R)-network that is clef:

R ¼ M \ C: (56)

But in fact a clef system is a priori an (M,R)-network, because closure to efficient
causation implies the repair ‘ metabolism entailment, whence

Fig. 12 A sample (M,R)-
network
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C � M (57)

(cf. Section 8.28 in Louie 2013).

Theorem A clef system is an (M,R)-network.
Relations (56) and (57) then combine to imply

R ¼ C ; (58)

that is,

Theorem A clef system is an (M,R)-system (and vice versa).

Sufficiency

(M,R)-systems began as a class of metaphorical, relational paradigms that define
cells.

Definition A cell is (at least) a material structure that realizes an (M,R)-system.
The class has since been generalized to model ‘organisms’, a term which is used

in the sense of general living systems, including, in particular, cells. So, by
definition,

L � R (59)

(a living system is an (M,R)-system).
In Louie (2012) (also Section 13.13 of Louie 2009), I have shown that

Theorem An (M,R)-system is anticipatory.
Thus with equality (58), one has

R ¼ C � A: (60)

The Venn diagram is now (Fig. 13)
At this point, the question is, “Is the set R � L empty?” Stated otherwise, “Is an

(M,R)-system a sufficient characterization of life?” Rosen argued (in what were in
effect concluding statements of his lifetime’s work), for example, that “Any material
system possessing such a graph [of an (M,R)-system] as a relational model (i.e.,
which realizes that graph) is accordingly an organism.” (Section 10C of Rosen 1991)
and “Making a cell means constructing such a realization. Conversely, I see no
grounds for refusing to call such a realization an autonomous life form, whatever its
material basis may be.” (Chapter 17 of Rosen 2000). So he answered the question by
defining (i.e., expanding) L so that
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R � L ¼ ∅, (61)

whence

L ¼ R: (62)

This is the

Postulate of Life A natural system is an organism if and only if it realizes an (M,R)-
system.

Thus an (M,R)-system is the very model of life, and, conversely, life is the very
realization of an (M,R)-system.

A union of interacting (M,R)-systems (or better, their join in the lattice of (M,R)-
systems; cf. Sections 2.1 and 7.28 in Louie 2009) is itself an (M,R)-system. A
multicellular organism has a life of its own, apart from the fact that the cells that
comprise it are alive. Similarly, in some sense an ecosystem of interacting organisms
is itself an organism. In particular, a symbiotic union of organisms may itself be
considered an organism (cf. Section 11.12 in Louie 2013).

The equalities (58) (R = C) and (62) (L = R) together imply

L ¼ C, (63)

which is

The Fundamental Theorem of Relational Biology A natural system is an organ-
ism if and only if it is closed to efficient causation.

Here is, then, the final taxonomy with the necessary and sufficient condition for
life (Fig. 14):

Impredicativity � Anticipation � Life: (64)

Fig. 13 Necessary and
(almost) sufficient conditions
for life
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Anticipation holds a pivotal role in the relational biology exercise of the charac-
terization of life. So hereby it is duly noted (Fig. 15).

Summary

Life � Anticipation � Impredicativity

Life anticipates. Robert Rosen’s theory of anticipatory systems arose out of his quest
to characterize life using the tools of relational biology. The connection explains the
presence of a chapter on “▶Relational Biology” in this Handbook. In this chapter, I
show how three necessary conditions for life – impredicativity, anticipation, and
closure to efficient causation – become jointly sufficient to distinguish a living
system from a nonliving one.

Fig. 14 The taxonomy

Fig. 15 The triumvirate
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